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Abstract: We have applied the electrostatically embedded

many-body (EE-MB) method truncated at the two-body

level (also called the pairwise additive EE-MB method or

the EE-PA approximation) and the three-body level (called

EE-3B) to calculate the gradient of the potential energy

for a simulation box containing 64 water molecules. We

employed the B3LYP density functional with the 6-31+G-

(d,p) basis set for this test case. We found that the EE-PA

method is able to reproduce the magnitude of the gradient

from a B3LYP/6-31+G(d,p) calculation on the entire

system to within 1.0% with a 1.3% error for the maximum

component of the gradient. Furthermore, the EE-3B method

is able to reproduce the magnitude of the gradient to within

0.1% with a 0.2% error for the maximum component of

the gradient. The good performance of the EE-MB meth-

ods for calculating forces and the highly parallel nature of

these methods make them well suited for use in molecular

dynamics simulations. Furthermore, since the methods can

be used for efficient and accurate calculations of forces

with any level of electronic structure theory that has analytic

gradients and with any electronic structure package that

allows for the presence of a field of point charges, these

methods can readily be used with a wide variety of density

functional theory and wave function theory methods.

Molecular simulations that use molecular mechanics
potentials or other analytic potentials for the potential energy
surface and classical mechanics for the nuclear motion have
been carried out for nearly 50 years,1 but although molecular
mechanics potentials may give good agreement with experi-
ment for the physical properties against which they are
parametrized, they often give poor results when applied to

properties outside this set. As a result of this shortcoming,
molecular mechanics potentials must be developed anew or
revalidated for each new system of interest and even for each
property one wants to study. In the interest of developing
more robust methods for calculating potential energies for
molecular simulations, there is great interest in the direct
use of quantum mechanical methods without analytic rep-
resentations, i.e., direct dynamics. In particular, a quantum
mechanical theoretical model chemistry2-4 can be validated
against a broad data set for predicting potential energy
surfaces or properties dependent on them; and if the
validation test is sufficiently broad, the quantum mechanical
model chemistry is likely to have better predictive value than
molecular mechanics because it more fully incorporates the
relevant physics.

Due to the large system sizes for most condensed-phase
simulations, even when using periodic boundary conditions,5,6

model chemistries based on wave function theory3,4 (WFT)
such as second-order Møller-Plesset perturbation theory
(MP2),7 coupled cluster theory with single and double
excitations (CCSD),8 or CCSD with quasiperturbative triples9

(CCSD(T)) are currently impractical in their original for-
mulations, in part because of the rapid scaling in cost of
these methods with respect to system size. (MP2, CCSD,
and CCSD(T) scale asN5, N6, andN7, respectively, where
N is the number of atoms in the system.10) As a result, most
direct dynamics simulations are carried out using density
functional theory11 (DFT), whose scaling cost, with popular
algorithms, increases only asN3 or N4. Due to the quantum
mechanical nature of DFT, these simulations are significantly
more expensive12,13 than their counterparts with molecular
mechanics or analytic potentials, but the added cost is
rationalized in the hope that the energies obtained are much
more accurate and the functionals are more transferable. A
drawback to such conventional calculations is that only a
relatively small number of density functionals have been
implemented in the most efficient periodic-boundary-condi-
tion simulation packages, and when a newer, more accurate
kind of functional becomes available, it may require special-
ized programming to be made available in efficient packages.

In recent years several groups have emphasized the
advantage of many-body expansions14-29 and other frag-
mentation methods30-39 for calculations on large systems.
A crucial aspect of using any such method for geometry
optimization or for calculating forces or molecular dynamics
is the ability to formulate efficient algorithms for analytic
gradients of the potential energy surface. The pioneering
fragment molecular orbital (FMO) method14-18,22-24,27,28has
been particularly successful for large systems, especially
proteins, and methods were developed for nearly analytic* Corresponding author e-mail: truhlar@umn.edu.
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restricted Hartree-Fock (RHF) gradients15 and analytic
derivatives of the two-body electrostatic interactions between
widely separated fragments.27 The molecular fractionation
with conjugate caps method,31-34 which does not include
three-body or higher-order terms or long-range electrostatics,
but rather simulates the local chemical environment of
fragments with conjugate caps, has also been applied very
successfully to proteins and allows33 for convenient calcula-
tion of dimer gradients. The method has been extended to
include long-range electrostatic fields both with35 and
without36 truncation, and in the former case gradients were
obtained.

We have formulated an efficient and accurate many-body
expansion method in a way that yields computationally
efficient energy gradients for all electronic structure levels
for which they are available for the fragments,25 and in this
letter we test the accuracy of the gradients and describe the
applicability to molecular simulations of this new approach,
which is called the electrostatically embedded many-body
(EE-MB) expansion. The EE-MB method can be used with
both wave function methods such as MP2 and CCSD(T) and
with DFT. For both types of methods it makes the scaling
more manageable, and it has the distinct advantage that it
can be used in conjunction with any electronic structure
package (allowing researchers to utilize any WFT level or
any density functional of their choosing). Very accurate
results can be obtained in the three-body approximation25,26,29

with a scaling ofN3. The EE-MB method is very general
and can be applied to molecular liquids such as simulations
of aqueous solutions or (when extended to include a scheme,
such as link atoms40-43 or conjugated caps,32 for terminating
fragments at fragment boundaries that pass through bonds)
to large covalent systems such as polymers or proteins. In
this work we focus on its utility for simulating molecular
liquids and use pure water as an example. A key issue is
that analytic gradients are available for three-body and
higher-order terms as well as two-body terms and for near
as well as far fragments, while retaining the key advantage
that the electrostatic field of the rest of the system is not
truncated.

The complete details of the EE-MB method are presented
elsewhere,25 and so here we present only a brief overview
of the method. For any level of theory (e.g., MP2 or CCSD-
(T) with a given basis set, or DFT with a given functional
and basis) we can expand the potential energy of a system
of N monomers (where a monomer can be a single molecule
a small collection of molecules) in a many-body expansion
given by

whereVn is then-body term. Truncating atV2 is called the
pairwise additive approximation (PA), and truncating atV3

is called the three-body (3B) approximation. For a system
with N monomers,V1 involves calculating allN monomer
energies,V2 involves calculating (N(N - 1))/2 dimer
energies, andV3 involves calculating (N(N - 1)(N - 2))/3!
trimer energies. If then-mer calculations are performed in
vacuum one has a conventional many-body expansion;
however, in the EE-MB methods (where MB) PA or 3B)
the n-mer calculations are performed in a field of point
charges at the nuclear positions of theN - n missing
monomers.

The applicability of many-body expansion methods to
Monte Carlo simulations has been discussed by Christie and
Jordan,21 and so in this work we will focus on application
to molecular dynamics calculations. In previous work we
have demonstrated the ability of the EE-MB methods to
accurately reproduce the energetics of a series of water
clusters ranging in size from 5 to 20 molecules.25,26,29In that
work we found that the EE-PA method was able to reproduce
the energy of a system to within 0.8% and that the EE-3B
method was able to reproduce the energy to within 0.3%,
and we also discussed the efficiency with which gradients
could be calculated using the EE-MB method. Because the
largest calculation carried out for these methods is a dimer
(in the EE-PA method) or a trimer (in the EE-3B method)
the problem of needing to carry out one very large calculation
is reduced to carrying out a very large number of small
calculations, which is more practical on most computers. In
this way one also avoids the very high scaling of many WFT
methods, such as CCSD(T), and this makes it possible to
apply the EE-MB levels of theory to simulations of very
large systems.

Within the EE-MB approximation the EE-PA and EE-3B
energies can be written as

whereN is the number of particles in the system and where
Ei, Eij, andEijk are the energies of the embedded monomers,
dimers, and trimers. Since the gradient is a linear operator it
follows that

and similarly

where analytic gradients are therefore available for any
method that has analytic gradients for the monomer, dimer,
and, in the case of the EE-3B method, trimer calculations,
provided that the program allows for fractionally charged
point charges as pseudonuclei. Since the magnitudes of the
point charges are fixed in our EE-MB calculations, the point
charges act like fractionally charged nuclei with no basis
functions; therefore, as the system evolves during the course
of a simulation there is no need to update the charges.
Nevertheless, one should also note that all terms on the right-
hand sides of eqs 4 and 5 contribute to all components of
the gradient. For example, even ifm * i, m * j, andm * k,
one still has that∇Eijk, ∇Eij, and∇Ei all contribute to the
gradient components corresponding to the coordinates of
monomerm.

V ) V1 + V2 + V3 + ‚‚‚ + VN (1)
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As mentioned previously, while the application of the EE-
MB method in this work is limited to a water cluster in which
there are no covalent bonds present between the monomers,
the form of eq 2 is very similar to the equation used to
calculate protein-ligand interactions with the molecular
fractionation with conjugate caps method presented in ref
33.

In order to demonstrate the ability of the EE-MB method
with fixed point charges to yield accurate gradients, we have
calculated a single-point gradient on a simulation box
containing 64 water molecules (see Figure 1), without
periodic boundary conditions, using both the EE-PA and EE-
3B methods with the B3LYP44-47 density functional and the
6-31+G(d,p)48 basis set, and we have compared the results
to a conventional B3LYP/6-31+G(d,p) calculation on the
full system. (Although the EE-MB method can be used in
conjunction with WFT methods such as MP2 and CCSD-
(T), we have limited ourselves for this validation test to the
use of DFT because the rapid scaling of MP2 and CCSD(T)
makes the calculation of a single-point gradient calculation
on the full system, as required to test the EE-MB gradients,
very expensive.) The work of Lenosky et al.49 has shown
that the use of a single gradient on a large system is a
powerful tool for the optimization of methods, and therefore
we use it here as a way to analyze the EE-MB method. Note
that the gradient of a cluster of 64 water molecules provides
192 gradient components against which to test the EE-MB
method.

The full calculation was carried out using theGaussian
03 software package.50 The EE-PA and EE-3B calculations
were carried out using the MBPAC 2007-2 software pack-
age.51

Table 1 compares the results of the EE-MB calculations
to the gradient from the full B3LYP/6-31+G(d,p) calculation.
Table 1 lists the magnitude of the gradient and the maximum
component of the gradient from the EE-PA, EE-3B, and
conventional B3LYP/6-31+G(d,p) calculations, the error in
the gradient, the error in the maximum component of the
gradient, and the mean absolute error in the components of
the gradient predicted by the EE-PA and EE-3B methods.
Table 1 also lists the percentage error in the magnitude of
the gradient and in the maximum component of the gradient
from the EE-PA, EE-3B calculations. From Table 1 it is clear

that both the EE-PA and EE-3B methods are able to
reproduce the forces for this system very well, with errors
in the gradient of less than 0.0002 au (one atomic unit (au)
of force equals one hartree per bohr) for the EE-PA method
and less than 3× 10-6 au for the EE-3B level, which
corresponds to a percentage error of less than 1% for EE-
PA and less than 0.01% for EE-3B. We see similarly good
performance for the maximum component of the gradient,
with the EE-PA method having an error of 1.3% and the
EE-3B method having an error of 0.2%. The near-order-of-
magnitude improvement as one goes from the EE-PA method
to the EE-3B method is consistent with past studies25,26,29

considering only energetics. The mean absolute error also
shows that the EE-3B method performs better than EE-PA
as it has a MAE of 4.07× 10-4 au compared to a value of
6.23 × 10-4 au for the EE-PA method. The average
magnitude of a component of the gradient is 1.37× 10-2

au, so the mean absolute deviation as a percentage of the
mean component is 4.5% for the EE-PA method and 3.0%
EE-3B method.

These comparisons show that, even at the EE-PA level,
the EE-MB method is able to achieve gradients in reasonable
agreement with gradients calculated by conventional meth-
ods. One should be careful not to interpret the deviation as
an error, just as the difference between conventional MP2
and conventional CCSD(T) is not an error but rather a
difference between two model chemistries. In the present
case the difference between conventional B3LYP and EE-
3B/B3LYP is expected to be smaller than the difference of
either from complete configuration interaction. A key issue
is that eqs 4 and 5 provide an accurate theoretical model
chemistry2-4 with precise and convenient gradients. The
deviation of EE-MB/DFT from conventional DFT will be
of minor importance for many purposes, but the high
precision of the gradients in the present algorithm will be a
critical component of stable (nondrifting) molecular dynamics
simulations.

Calculating the bulk properties of molecular liquids by
the EE-MB method can be accomplished by employing
periodic boundary conditions,5,6 and this can be accomplished
for EE-MB simulations by methods already developed for
QM/MM simulations52 augmented by a criterion to select
the appropriate image of each monomer in the dimers and
trimers. The latter can be accomplished by the nearest-image
convention,6 which is currently employed in simulations
utilizing analytic functions for the potential energy functions.
The nearest-image convention is widely used for pairwise
potentials and has been modified53 for three-body potentials,
and its implementation is straightforward. Additionally, for
any potential that decays more rapidly thanR-3 (such as
dispersion terms arising purely from quantum mechanical
correlation) the use of a cutoff can be employed (typical
cutoffs are one-half the box length for a cubic simulation
box). In cases where one has long-range interactions, Ewald
summations are used with molecular mechanics potentials
to account for the interactions of point charges and dipolar
molecules,5 and they can be employed in the same way for
the present electrostatic embedding terms.

The treatment of periodic images of the embedded
quantum mechanical monomers, dimers, and trimer can be
identical to methods employing periodic boundary in the
context of combined quantum mechanical (QM) and mo-

Figure 1. Simulation box used for single point gradient calculation.
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lecular mechanical (MM) calculations (QM/MM calcula-
tions52,54-58). The total energy for a QM/MM calculation can
be written as

where E(MM) is the energy of the molecular mechanics
system, E(QM) is the contribution from the quantum
mechanical system, andE(QM-MM) is the contribution due
to coupling of the MM and QM regions. For QM/MM
methods that employ electronic embedding,43,59-67 one of the
terms in E(QM-MM) is computed along withE(QM) by
calculatingE(QM) in a field of molecular mechanics point
charges. Therefore, each embedded monomer, dimer, or
trimer calculation in an EE-MB calculation can be thought
of as a simplified QM/MM calculation, in which theE(MM)
term is zero (the interaction energy of the point charges is
not included in the total EE-MB energy), and the only
contribution to theE(QM-MM) term is from embedding the
n-mer in an environment of point charges. There are a
number52,54,57,58,66,67of examples in the literature in which
periodic boundary conditions have been applied successfully
to QM/MM calculations, and QM/MM codes can be used
in conjunction with the EE-MB method by writing a
subroutine to interface the existing code with the electronic
structure package of one’s choosing to carry out the EE-
MB calculation. Furthermore, because all of the monomer,
dimer, and trimer calculations are independent of each other,
the EE-MB method is highly parallel, which allows for rapid
energy calculations, even on very large systems.

Due to the expense of an accurate treatment of the
electronic wave function near the nucleus of an atom, a
variety of specialized approximations and procedures have
been developed for plane-wave simulations of condensed-
phase systems.68-75 For example, ultrasoft pseudopoten-
tials68,70 are often used to keep the plane wave cutoff low,
and such pseudopotentials must be carefully optimized to
minimize inaccuracies.71-73 Due to the small system sizes
calculated in the EE-MB methods, all calculations can be
carried out without pseudopotentials or with norm-conserv-
ing76 (also called shape-consistent77) effective core potentials,
which are less economical but more accurate. Also, well
validated techniques developed for small-molecule calcula-
tions can be used.

It is interesting to consider the amount of time needed to
carry out these kinds of calculations. Table 2 presents a series
of hypothetical timings, for a calculation on 64 molecules,

for methods that scale asaN3 (e.g., BLYP, PBE, and M06-
L), bN4 (e.g., B3LYP, M06-2X), andcN7 (e.g., MP4, CCSD-
(T)), whereN is the number of atoms in the system, anda,
b, andc are unknown prefactors, specific to each level of
electronic structure theory. (It is an approximation to assume
that this scaling holds for allN, including smallN, but timing
analyses are inherently approximate, and the present timing
discussion is intended to illustrate scaling issuessnot to be
quantitative.) Table 2 shows that even on a single processor,
the many-body approaches are far more cost-effective than
conventional calculations. In this example, use of the EE-
3B method would reduce the cost of a method that scales as
cN7 by 6 orders of magnitude on a system of 64 molecules,
and use of the EE-PA method would reduce the cost by 7
orders of magnitude. Even for density functional theory it is
clear from Table 2 that the EE-MB methods are cost-
effective. For hybrid methods, such as B3LYP or M06-2X
that scale asbN4, both the EE-PA and EE-3B methods are
less expensive than a conventional calculation on the full
clusters. For nonhybrid methods the EE-PA method is an
order of magnitude less expensive, and the EE-3B calculation
is only a factor of 1.3 more expensive.

All calculations in Table 2, both conventional and EE-
MB, can be further speeded up by linear scaling algo-
rithms,18,52,78,79but quantitative speedups depend strongly on
the program and will not be estimated here. Nevertheless it
is worthwhile to note that linear scaling can be achieved in
EE-MB by using a cutoff to reduce the number of two-body
or three-body terms that must be calculated. We showed that
if a cutoff of 6 Å is used, then even for a cluster as small as
(H2O)20 one can eliminate up to 44% of the pairs.26 A key
issue here is that the introduction of linear scaling is much
simpler in the EE-MB approximation than in other methods
of comparable accuracy because it simply involves limiting
the number of dimers and/or trimers considered, but it does
not require cutting off long-range electrostatics when they
are treated by Ewald.

Table 1. Errors in the Gradient and the Components of the Gradient (in Atomic Units) for the EE-PA and EE-3B Methods
at the B3LYP/6-31+G(d,p) Level of Theory

full EE-PAa EE-3B

magnitude of the gradient 1.8512 × 10-2 1.8695 × 10-2 1.8509 × 10-2

max. component of the gradient 6.0892 × 10-2 6.1686 × 10-2 6.1005 × 10-2

error
magnitude of the gradient 1.8354 × 10-4 -2.6305 × 10-6

max. component of the gradient 7.9324 × 10-4 1.1312 × 10-4

% error
magnitude of the gradient 0.99 -0.01
max. component of the gradient 1.30 0.19

MAEb 6.2257 × 10-4 4.0667 × 10-4

a The EE-MB calculations used point charges of -0.778 and 0.389 for oxygen and hydrogen atoms, respectively, as in past work.25 b MAE
denotes the mean absolute error (in atomic units) in the components of the gradient.

E(QM/MM) ) E(MM) + E(QM) + E(QM-MM) (6)

Table 2. Comparison of Hypothetical Timings for Full
Calculations and EE-MB Calculations for a System
Containing 64 Molecules

scaling conventional EE-PA EE-3B

aN3 2.6 × 105 a 1.6 × 104 a 3.5 × 105 a
bN4 1.7 × 107 b 3.2 × 104 b 7.0 × 105 b
cN7 4.4 × 1012 c 2.5 × 105 c 5.6 × 106 c
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In summary, we have found that both the EE-PA and EE-
3B methods are able to reproduce the gradient and the
maximum component of the gradient for a simulation box
containing 64 water molecules to within 1% and 0.1%
respectively, at the B3LYP/6-31+G(d,p) level of theory.
Probably more important though is the high-precision at-
tainable when EE-MB methods are used as a theoretical
model chemistry. Additionally, the EE-MB methods are
designed in such a way as to allow the straightforward
introduction of periodic boundary conditions, so that they
give a promising alternative to current simulation techniques
for molecular liquids.

An important advantage of the EE-MB methods is that
they can easily be employed with any electronic structure
package that allows for using a field of background point
charges. Furthermore once implemented for a given elec-
tronic structure package, the EE-MB program is available
for all electronic structure levels available in that package.
It is very efficient for any density functional or wave function
theory that has analytic gradients, and it can provide a
substantial savings in cost for large systems.
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Abstract: The induction energy often plays a very important role in determining the structure

and properties of clusters of organic molecules, but only in recent years has an effort been

made to include this energy in such calculations, notably in the field of organic crystal structure

prediction. In this paper and the following one in this issue we provide ab initio methods suitable

for the accurate inclusion of the induction energy for molecules containing as many as 30 atoms

or so. These techniques are based on Symmetry-Adapted Perturbation Theory using Density

Functional Theory [SAPT(DFT)] and use distributed polarizabilities computed using the recently

developed density-fitting algorithm with constrained refinement. With this approach we are able

to obtain induction models of varying complexity and study the effects of overlap and related

numerical issues. Basis set effects on the exact and asymptotic induction energies are

investigated, and the roles of higher-order induction energies and many-body effects are explored.

I. Introduction
The induction energy plays an important role in determining
the structures of clusters of polar molecules. The cooperative
nature of the induction means that, for polar molecules,
induction effects dominate the many-body contributions to
the interaction energy. These many-body effects can be very
important in determining the structures of clusters of
molecules. For example, three- and four-body effects have
been shown to be responsible for the tetrahedral structure
of liquid water.1,2 However, this interaction energy compo-
nent is often neglected or treated incorrectly. This is not only
because it is hard to calculate accurately but also because
important aspects of the induction energy are still poorly
understood.

There are many features that make the induction energy
hard to handle. First, it is not pair-additive. The induction
energy of a particular molecule,-(1/2)RF2 in its simplest
form, depends on the square of the total electric fieldF due
to its neighbors, and the fields of different neighbors may

interfere constructively or destructively.3 Second, it is
cooperative: the charge distribution of each molecule is
polarized by the electric field of its neighbors, and it is the
modified charge distribution of each molecule that is the
source of the field that polarizes the others. This cooperative
behavior is important in clusters and condensed phases of
polar molecules and favors the hydrogen-bonded networks
that are seen for example in water. Since each molecule is
polarized by all the others, it is necessary to solve coupled
equations for the modified charge distributions. This can
usually be carried out by a simple iterative procedure, but it
is a time-consuming additional step in a simulation.

The most general way to calculate the induction4 uses the
frequency-dependent density susceptibility,5 or FDDS, R-
(r ,r ′|ω), which describes the change in charge density atr
due to a delta-function change in electrostatic potential atr ′
oscillating at frequencyω. To describe induction we need
only the static FDDS,R(r ,r ′|0), and this can be calculated
efficiently and accurately by modern methods. The resulting
description is however much too cumbersome for practical
use; it would be necessary to solve a set of coupled integral
equations for the changes to the electron density of each
molecule and then to carry out integrals over each molecule
to determine its induction energy. Consequently we need to
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extract a description in terms of polarizabilities. For all but
the smallest of molecules, single-site descriptions, using the
overall molecular polarizabilities, are inadequate, and the
polarizability needs to be described in a distributed way, as
the charge distribution does.

This does not however solve all the problems. At short
range, when the molecular charge densities overlap, the
distributed-polarizability description is subject to penetration
error, just like the distributed-multipole description of the
electrostatic interaction. Using the FDDS we could describe
the penetration effects correctly, but unfortunately that is
usually impracticable.

This is by no means the end of the story. The polarizability,
even in the accurate form of the FDDS, describes thelinear
response of the molecule to external fields and gives the
induction energy only to second order in perturbation theory.4

Moreover, as usually formulated, it ignores effects arising
from electron exchange between molecules at short range.
For a more complete description, we need to include higher-
order terms in the perturbation series and to include the
effects of exchange.6,7

In fact a large part of the higher-order effects for clusters
can be recovered if the polarization problem is solved self-
consistently,3 by the iterative procedure mentioned above,
but this still treats the response of each individual molecule
as linear in the field. Higher-order effects, described by
hyperpolarizabilities, are not included in such a treatment
and become increasingly significant at short distances. As
we shall see in this paper, these neglected effects can result
in a significant error in the dimer energy and geometry.

As for the exchange effects, it has become clear from
recent calculations using Symmetry-Adapted Perturbation
Theory (SAPT) that they make a very significant contribution
to the total induction energy.7,8

In this paper and the following one in this issue1 we
attempt to obtain a practical procedure for calculating
accurate induction energies for assemblies of molecules in
clusters or in the condensed phase. Here we discuss the
theoretical issues associated with accurate calculations of the
nonexpanded and expanded induction energies. The numer-
ical issues associated with basis sets and model building will
be discussed in part 2.

II. General Overview
For the interaction between two molecules, the second-order
induction energy can be accurately computed using sym-
metry-adapted perturbation theory (SAPT)7 or the more
recent version of SAPT based on a density-functional
treatment of the monomers (SAPT(DFT)9-12 or the very
similar and independently derived DFT-SAPT13-16). In the
following we refer to SAPT(DFT) for brevity, but it should
be understood that the DFT-SAPT method is essentially the
same. The superior computational scalings and accuracies
of the SAPT(DFT) expressions make this theory the method
of choice, particularly for organic molecules, for which the
SAPT expressions are usually too expensive computationally
to be evaluated. The SAPT(DFT) expression for the second-
order induction involves the frequency-dependent density
susceptibility (FDDS) at zero frequency,11 which can be

evaluated quite efficiently using coupled Kohn-Sham (CKS)
theory (also known as Kohn-Sham linear response theory).
This expression does not include exchange effects; the
second-order exchange-induction energy cannot be written
in terms of the FDDS and is calculated using scaling rules11,12

which have been demonstrated to result in rather accurate
energies.

For polar molecules with large polarizabilities, the higher-
order induction and exchange-induction energies (in which
we include terms of third order and above) can make
significant contributions to the two-body interaction energy.
(We include in the category of polar molecules any molecule
that gives rise to large electric fields in its neighborhood,
whether or not it has a significant dipole moment. The
interaction between such molecules is dominated by the
electrostatic energy.) These higher-order effects are strongest
in hydrogen-bonded complexes, where they can account for
as much as 10-15% of the total two-body interaction energy.
In most SAPT and SAPT(DFT) calculations of the intermo-
lecular energy the higher-order energies have been estimated
using the so-calledδint,resp

HF term, defined as the difference
between the supermolecular Hartree-Fock interaction energy
of the dimer and certain low-order SAPT energy terms.7,17,18

This procedure has been shown to result in interaction energy
potentials of high accuracy for hydrogen-bonded complexes
like the water dimer,2,19but recent evidence seems to suggest
that theδint,resp

HF term may not be suitable for non-hydrogen-
bonded complexes.20 We will return to this issue below. In
any case, theδint,resp

HF term is cumbersome to calculate as it
requires a supermolecular Hartree-Fock calculation in the
dimer basis (so as to avoid the basis-set superposition error)
and a low-order SAPT calculation, in addition to the SAPT-
(DFT) calculation. Consequently an alternative means of
estimating the higher-order contributions to the interaction
energy is needed.

Recently, the third-order SAPT interaction energy com-
ponents have been derived and implemented, though without
the inclusion of intramonomer correlation effects.20 It has
often been assumed that the third-order energies would
account for most of the higher-order contributions to the
interaction energy. However, Patkowski et al.20 have dem-
onstrated that while this is true for non-hydrogen-bonded
complexes, the third-order terms may account for less than
half of the higher-order energies for hydrogen-bonded
complexes. It is believed that this is the case for two
reasons: first, the higher-order energies are dominated by
induction and exchange-induction effects,20 and second, the
induction series is known to be divergent due to the presence
of Coulomb singularities in the interaction operator.21

In spite of the problems associated with the higher-order
interaction energy components, we shall demonstrate that
the third-order induction and exchange-induction energies
can form a good and computationally convenient approxima-
tion to the true higher-order energies if evaluated within the
SAPT(KS) theory,9,11 that is, using KohnsSham orbital
energies and eigenvalues. This procedure has many advan-
tages: (1) The higher-order energies for non-hydrogen-
bonded complexes are recovered very accurately. (2) While
there will be non-negligible errors made in hydrogen-bonded

8 J. Chem. Theory Comput., Vol. 4, No. 1, 2008 Misquitta and Stone



geometries, these will be much smaller than the errors
incurred if the higher-order corrections were ignored alto-
gether. (3) The interaction energies are obtained in one
calculation. (4) And finally, the third-order induction and
exchange-induction energies are the least computationally
demanding of the third-order energy components and so do
not add significantly to the overall computational cost of the
SAPT(DFT) method.

The many-body contribution to the interaction energy can
be very important for polar clusters, in which many-body
effects can account for as much as 15-30% of the interaction
energy.22,23 This is not surprising, as the induction energy,
which is very important for such systems, is strongly
nonadditive in nature.3 The dominant contribution to the
many-body energy arises from the three-body energy which
can be computed using the three-body formulation of SAPT
(see ref 7 for a review) or using supermolecular tech-
niques,22,24 but the computational expense is so large as to
make these methods applicable to systems of a few atoms
only. Fortunately, for polar systems, which include most
organic molecules, the many-body contributions are domi-
nated by many-body induction effects which can be well
approximated using damped classical polarizable models if
accurate molecular polarizabilities and multipole moments
are known.

This paper is organized as follows: In section IV.1 we
outline the theoretical details of the SAPT(DFT) expression
for the second-order induction energy. In subsection IV.1.2
we explore and assess ways of including the higher-order
induction and exchange-induction energies using several
examples. In section IV.2 we briefly describe ways of
including the many-body contributions to the induction
energy using the damped classical polarizable model. The
damped classical polarizable model is also used to calculate
the asymptotic induction energies. This needs the molecular
polarizabilities in distributed form. In section IV.3 we
describe the distribution method based on the constrained
density-fitting procedure and present a method for optimizing
the resulting distributed polarizabilities. In section V we
conclude with a summary of the main results of this paper.

III. Notation
If electron exchange between molecules is ignored, which
is a good approximation at large separations, the interaction
energy can be obtained using standard perturbation theory.
This is conventionally described as the polarization ap-
proximation, though this is an unsatisfactory terminology,
particularly in the context of the induction energy. The
contribution that is usually called the induction energy, and
denotedEind, appears at second order, but we denote it here
as Eind,pol

(2) to distinguish it explicitly from the exchange-
inductionEind,exch

(2) . Eind,pol
(2) is the term defined as the induc-

tion and denotedEind, in SAPT and SAPT(DFT).12 However
there are also induction energy contributions at higher orders,
Eind,pol

(n) . The second-order termEind,pol
(2) can be expressed in a

‘nonexpanded’ form which remains valid at any intermo-
lecular separation, however small, but it is conventionally
expressed as a power series in 1/R. This power-series form
is often referred to as the classical model, and we denote

the damped version of this model byEind,d-class
(2) . Higher-

order contributions can be expanded in the same way. We
should haveEind,pol

(2) ∼ Eind,d-class
(2) for medium to large

separations, but it turns out that the basis-set converged value
of Eind,pol

(2) can be an order of magnitude larger (i.e., more
negative) thanEind,d-class

(2) at equilibrium geometry and even
larger at shorter distances. It has recently been shown21 that
Eind,pol

(2) is too large in magnitude because of the Coulomb
singularities in the interaction operator. These singularities
are absent in the expanded form of the operator, so it is not
surprising thatEind,d-class

(2) is much smaller in magnitude than
Eind,pol

(2) . The Coulomb singularities also result in a very large
exchange-induction energy,Eind,exch

(2) , which is positive and
significantly quenchesEind,pol

(2) . Therefore neither energy is
meaningful on its own.

Because of these complications, we believe that rather than
referring to the conventional definitions12 of the induction
and exchange-induction energies separately, it is much better
to define the induction energy as the sum. That is, thenth
order induction energy is

Since Eind,exch
(n) decays exponentially with increasingR,

Eind,tot
(n) and Eind,pol

(n) both tend toEind,d-class
(n) asymptotically.

However, as will be demonstrated in sections V and VI of
part 2, Eind,tot

(n) agrees far better withEind,d-class
(n) at all dis-

tances thanEind,pol
(n) does.

The total interaction energy including terms up to ordern
is denoted byU(n) rather than the more conventionalEint

(n).
This has been done so as to avoid possible confusion arising
from the similarity of the subscripts ‘ind’ and ‘int’.

IV. Theory
IV.1. Induction Contributions to the Two-Body Energy.
In the two-body energy, the induction contributes to terms
of second and higher orders in the interaction operator. The
second-order induction is the most important, constituting
between 85% and 96% of the total two-body induction
energy.

IV.1.1. At Second Order: Eind,pol
(2) and Eind,exch

(2) . From the
polarization expansion,6,7 Eind,pol

(2) for moleculeX is

whereΦr
X andEr

X are the eigenstates and energy eigenval-
ues of the monomer HamiltonianHX, andV̂ is the perturba-
tion due to the electrostatic potential arising from the rest of
the system.Eind,pol

(2) (X) can be interpreted as the second-order
response of monomerX to the static fieldV̂. One can show
that eq 2 can be rewritten in terms of the frequency-
dependent density susceptibility (FDDS)RX(r ,r ′|ω) evaluated
at zero frequency4

Eind,tot
(n) ) Eind,pol

(n) + Eind,exch
(n) (1)

Eind,pol
(2) (X) ) ∑

r*0

|〈Φ0
X|V̂|Φr

X〉|2

E0
X - Er

X
(2)

Eind,pol
(2) (X) ) - 1

2∫∫RX(r , r ′|0)V(r )V(r ′)drdr ′ (3)
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where

andV ) ∫FY
tot(r ′)/|r - r ′|dr ′ is the electrostatic potential of

the rest of the system. In the equation above,F̂X(r ) ) -
∑i∈Xδ(r - r i) is the electron density operator. The FDDS
describes the linear response of the electron density to a
frequency-dependent perturbation.

To calculateEind,pol
(2) for an interacting pair of molecules

within SAPT(DFT), the electrostatic potentials of the un-
perturbed monomers are evaluated using the Kohn-Sham
orbitals, and the FDDS is evaluated using coupled Kohn-
Sham theory (CKS)25-27 (also known as linear-response
DFT). In CKS theory, the FDDS takes the form

where the subscriptsi and i′ (V and V′) denote occupied
(virtual) molecular orbitals, andφi is a molecular orbital. In
CKS theory (and coupled Hartree-Fock theory (CHF)) the
coefficientsCiV,i′V′(ω) can be written as26

where I is the unit matrix, and theH(1) and H(2) matrices,
called the electric and magnetic Hessians, respectively, are
defined in the CKS theory (in the adiabatic approxima-
tion25,26) as follows

and

whereei is the Kohn-Sham energy eigenvalue of molecular
orbital φi, cx is the fraction of the Hartree-Fock exchange
included in the exchange-correlation (XC) functional (cx )
0 for a nonhybrid functional),Vx is the exchange part ofVxc,
and the two-electron coulomb integral (ij |kl) ) 〈φi(1)φj(1)|1/
r12|φk(2)φl(2)〉. CKS theory is, in principle, exact if the exact
exchange-correlation functional is used. In practice, only
approximations are known, and from extensive numerical
experiments it has been concluded11,12,28that the asymptoti-
cally corrected29,30 PBE031 exchange-correlation func-
tional12,32 is the most suitable for accurate interaction
energies. For large molecules however, it is too expensive
computationally to evaluate the last integral in eq 7 using
Vxc and Vx from the PBE functional. A more practical
approach is to use the exchange-only LDA functional in the
last term of eq 7. This approximation results in a small (less
than 1%) loss in accuracy which is more than compensated
by an order of magnitude reduction in computational
expense.12

In order to implement the asymptotic correction, accurate
vertical ionization potentials (IPs) are needed for the
monomers. When they are not available experimentally, good
estimates may be obtained from the difference between the
energies of theN and N - 1 electron systems. The PBE0
functional is best suited for this calculation too as tests on
atoms, diatoms, and small organic molecules have shown
that it gives IPs with mean errors centered about 0.0 au with
a standard deviation of only 0.007 au.33

As with the dispersion energy,10,12 density-fitting tech-
niques can be used to make the evaluation of theEind,pol

(2)

more efficient. Using density-fitting, the molecular orbital
productsφi(r )φV(r ) that appear in eq 5 can be expanded as

where{ø} is an auxiliary basis set, and the coefficientsDiV,p

are determined by least-squares. The density-fitted FDDS
takes the form

where theC̃pq(ω) are the transformed coefficients given by
C̃pq(ω) ) ∑iV,i′V′DiV,pCiV,i′V′(ω)Di′V′,q. Within Kohn-Sham
theory, the total charge densityFY

tot of closed-shell systems
is given by

whereZâ andRâ are the nuclear charge and position, andj
labels the occupied orbitals. Consequently the electrostatic
potentialV of the rest of the system can be written as

where the sums run over the nuclei and orbitals of the rest
of the system, which in this case is just monomerY. Using
the density-fitted FDDS and the above expression forV in
eq 3 we obtain the density-fitted form ofEind,pol

(2) for
monomerX

whereMp
Y is defined as

and we have used the definitions

and

φi(r )φV(r ) ) ∑
p

DiV,pøp(r ) (9)

R(r ,r ′|ω) ) ∑
p,q

C̃pq(ω)øp(r )øq(r ′) (10)

FY
tot(r ) ) ∑

â

Zâδ(r - Râ) - 2∑
j

|φj(r )|2 (11)

V(r ) ) ∑
â

Zâ

|r - Râ|
- 2∑

j
∫|φj(r ′)|2

|r - r ′|
dr ′ (12)

Eind,pol
(2) (X) ) -

1

2
∑
pq

Mp
YC̃pq

X (0)Mq
Y (13)

Mp
Y ) Lp

Y - 2∑
q′

∑
j

Jpq′Djj ,q′
Y (14)

Jpq′ ) ∫∫øp(r )øq′(r ′)
|r - r ′| drdr ′ (15)

Lp
Y ) ∑

â
∫ Zâ

|r - Râ|
øp(r )dr (16)

RX(r , r ′|ω) )

2∑
r*0

Er
X - E0

X

(Er
X - E0

X)2 - ω2
〈Φ0

X|F̂X(r )|Φr
X〉〈Φr

X|F̂X(r ′)|Φ0
X〉 (4)

R(r ,r ′|ω) ) ∑
iV,i′V′

CiV,i′V′(ω)φi(r )φV(r )φi′(r ′)φV′(r ′) (5)

CiV,i′V′(ω) ) 4[(H(2)H(1) - p2ω2I )-1H(2)] iV,i′V′ (6)

H iV,i′V′
(1) ) (eV - ei)δiV,i′V′ + 4(iV|i′V′) - cx[(ii ′|VV′) +

(iV′|i′V)] + 4∫ φiφVφi′φV′

δ(Vxc - cxVx)

δF
d3r (7)

H iV,i′V′
(2) ) (eV - ei)δiV,i′V′ - cx[(ii ′|VV′) - (iV′|i′V)], (8)
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The evaluation ofEind,pol
(2) using eq 13 involves a compu-

tational cost that scales asO(m2), wherem is the size of the
auxiliary basis. This is smaller than theO(no

2 nv
2) without

density-fitting, but, much more importantly, the computa-
tionally demanding 4-center 2-electron integral transforma-
tion is avoided in the evaluation of eq 13, having been
replaced by the 2-center 2-electron integralsJpq′.

Futhermore, when monomer basis sets are used, onlyJpq

and Lp
Y need to be recomputed for each dimer geometry.

This can result in a considerable savings in computational
effort as onlyO(m2) operations are needed to evaluate the
induction energy at each dimer geometry. However, see
section VI in part 2 for some of the numerical issues
associated with using such basis sets.

In part 2 we will need to evaluate the second-order
induction energy of a molecule and a point charge. For such
a system, the electrostatic potential isV ) Q/|r - RQ| where
RQ is the location of the point charge andQ its value. The
resulting induction energy is simply

whereLp
Q ) ∫[Q/|r - RQ|]øp(r )dr .

The exchange-induction energy at second order,Eind,exch
(2) ,

quenchesEind,pol
(2) significantly. Eind,exch

(2) cannot be expressed
in terms of the FDDS and electron densities of the monomers,
so it is estimated from the SAPT(KS) energies (denoted by
‘KS’) using a scaling relation12

The large quenching ofEind,pol
(2) by Eind,exch

(2) is believed to
be an effect of excessive electron tunneling due to the
electron-nuclear Coulomb singularities in the interaction
operator.21 These singularities are also responsible for the
divergence of the perturbation theory. It has been shown that
a convergent perturbation theory can be built using a
regularized form of the interaction operator, that is, one in
which the singularities arising from the electron-nuclear
terms are removed.21 It is also possible that for a regularized
version of SAPT(DFT), the exchange-induction terms would
not be needed. Preliminary evidence from our group suggests
that this may well be the case.34

In summary, then, we recommend that the second-order
induction energy be expressed according to eq 1, that is, as

with Eind,pol
(2) calculated by coupled Kohn-Sham theory as

described above, andEind,exch
(2) given by eq 18.

IV.1.2. Higher-Order Two-Body Energies.Contributions
to the two-body interaction energy from terms beyond the
second order in perturbation theory, denoted byU(3-∞), are
often large and cannot be neglected. For polar molecules
like water, induction energies dominate these higher-order
terms, which can constitute as much as 15% of the equilib-
rium binding energy of the dimer. On the other hand, for

nonpolar molecules, the higher-order energies contribute only
about 3-5% of the total interaction energy and could even
be ignored if high accuracies are not needed.

U(3-∞) is often approximated by theδint,resp
HF correction,

defined as17,18

whereEelst
(10), Eexch

(10), andEind,tot,resp
(20) are the SAPT corrections

with no intramonomer correlation effects included (The
subscript ‘resp’ indicates that the induction energy is
calculated with response effects included.7), andUHF is the
supermolecule Hartree-Fock interaction energy computed
with the counterpoise correction. Bear in mind that
Eind,tot,resp

(20) has been defined using eq 1 and includes the
exchange-induction contribution. TheδHF term approximates
the third- and higher-order contributions to the interaction
energy but must be defined within SAPT as it has no
counterpart in SAPT(DFT). Unfortunately, this term is too
cumbersome to calculate on a routine basis, as its evaluation
using eq 20 involves a supermolecule Hartree-Fock calcula-
tion in the dimer basis in addition to a low-order SAPT
calculation. Furthermore, there is evidence that it may be a
poor approximation to the higher-order energies for nonpolar
systems20 (but see the discussion in section V).

Another means of approximatingU(3-∞) is through the
damped classical polarizable model. The derivation of the
induction energy in a classical polarizable model is given in
ref 3. Here we reproduce the final expressions in their general
form. The damped classical induction energy of moleculeA
in a cluster is

whereQt
a is the multipole moment operator for momentt at

sitea, andTtu
ab is the interaction tensor3 which describes the

interaction between a multipoleQu at b and a multipoleQt

ata. f(tu)(âRab) is a damping function, which is conventionally
assumed, in the absence of evidence to the contrary, to
depend only on the distanceRab between sitesa andb and
not on their relative orientation; the parameterâ specifies
the strength of the damping and may depend on the nature
of the sites.∆Qt

a is the change in multipole momentt at a
due to the self-consistent polarization of sitea in the field
of all sites on other molecules and is given by

whereRtt′
aa′ is the distributed polarizability for sites (a, a′)

which describes the response of the multipole moment
componentQt

a at sitea to the t′-component of the field at
site a′. Notice that eq 22 must be solved iteratively for all
molecules in the system, as the∆Q occur on both sides of
the equation. In the case of a dimer the sum overB just
includes the other member of the dimer. If∆Q is omitted
from the right-hand side, we recover the damped classical
approximation of the second-order induction energy,
Eind,d-class

(2) . At the mth iteration, we additionally obtain the

Eind,pol
(2) ) -

1

2
∑
pq

Lp
QC̃pq(0)Lq

Q (17)

Eind,exch
(2) ≈ Eind,exch

(2) (KS) × Eind,pol
(2)

Eind,pol
(2) (KS)

(18)

Eind,tot
(2) ) Eind,pol

(2) + Eind,exch
(2) (19)

δint,resp
HF ) UHF - (Eelst

(10) + Eexch
(10) + Eind,tot,resp

(20) ) (20)

Eind,d-class(A) )
1

2
∑
a∈A

∑
B*A

∑
b∈B

∑
tu

∆Qt
af(tu)(âRab)Ttu

abQu
b (21)

∆Qt
a ) -∑

a′∈A
∑
B*A

∑
b∈B

∑
t′V

Rtt′
aa′f(t′V)(âRa′b)Tt′V

a′b(QV
b + ∆QV

b) (22)
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damped classical approximation toEind,tot
(m+2). Call this ap-

proximation Eind,d-class
(m+2) . The quantum expressions for the

higher-order induction energies involve, besides the FDDS,
which is a linear response function, the quadratic and higher-
order response functions. The classical polarization model
completely neglects these higher-order response functions.
Furthermore, orbital overlap effects are neglected by the
classical model, and these effects become increasingly
important with increasing order in perturbation theory. The
incorporation of the damping function attempts to correct
for this neglect, but little is known about the form that it
should take. Therefore, even though the damped classical
polarizable model works reasonably well for the second-order
induction energy, it is not reliable for the higher-order two-
body induction effects.

The failure of the classical polarization models to recover
the higher-order energies is clearly illustrated in Figure 1
for the water dimer. For this system, comparisons with
interaction energies calculated using CCSD(T) suggest that
that δint,resp

HF is a good estimate of the higher-order energies.
The damped classical estimate of these energies,Eind,d-class

(3-∞) ,
is clearly inadequate, being an order of magnitude smaller
than theδint,resp

HF correction for energetically relevant center-
of-mass separations.

An alternative to the above methods is to approximate
U(3-∞) by the third-order induction energy and include the
missing terms of fourth and higher orders using the damped
classical polarizable model, that is

Here Eind,d-class
(4-∞) is the damped classical induction energy

summed from the second iteration onward (i.e., to conver-
gence). The third-order energies are expected to dominate
U(3-∞), so this approximation would include most of the
overlap effects that are missing from the classical polarizable
model. The SAPT expressions forEind,pol

(3) andEind,exch
(3) have

been derived20,38 but without the inclusion of orbital relax-

ation effects. That is, when used with Kohn-Sham orbitals
and eigenvalues, these energies are obtained at the SAPT-
(KS) level of theory. We will denote the resulting ap-
proximation byU(3-∞)(KS) which, using eq 1, is defined as

Orbital relaxation effects have been demonstrated to play
a relatively minor role for the second-order induction.11 In
ref 11 this was argued to be at least in part due to a
cancellation of errors. As there is no reason to expect the
same to happen for the third-order energies, one might
question the use of the SAPT(KS) expressions here. How-
ever,U(3-∞) is relatively small in magnitude compared with
the second-order energy, so any errors incurred by the use
of the SAPT(KS) expressions are probably less important.

From Figure 1 we see thatU(3-∞)(KS) is a far better
approximation to the higher-order energy contributions than
the damped classical polarizable model alone, but the higher-
order terms are probably still underestimated by this ap-
proximation. In Table 1 we report second-order interaction
energies and the various estimates of the third-order terms
discussed above for a few dimers. For the water dimer, taking
UCCSD(T) as a reference, we see that while addingδint,resp

HF to
U(2) from SAPT may make sense, adding it toU(2) from
SAPT(DFT) leads to an overestimate of the interaction
energy by about 4%. On the other hand, addingU(3-∞)(KS)
to U(2) from SAPT(DFT) leads to an interaction energy
underestimated by about 4%. Therefore it is possible that
the δint,resp

HF correction is an overestimate of the higher-order
terms.

The effects of these approximations on the total interaction
energy for the water dimer are more clearly represented in
Figure 2. The SAPT(DFT) interaction energy at second order,
U(2)[SAPT(DFT)], results in a potential that is clearly too
shallow, with the repulsive wall and minimum both moved
out toward largerR. Adding δint,resp

HF to U(2)[SAPT(DFT)]
results in a potential curve that is apparently too deep with
both the repulsive wall and minimum moved inward. This
potential curve is quite similar to the SAPT curve. The best
agreement with the CCSD(T) potential is obtained with the
U(2) [SAPT(DFT)]+U(3-∞)(KS) approximation, but this could
be due to the slow convergence of the CCSD(T) interaction
energy with respect to basis set.

Also reported in Table 1 are interaction energies for the
strongly polar hydrogen fluoride dimer and the H2O‚‚‚H3N
dimer in a weakly polar geometry. The hydrogen fluoride
dimer is probably the worst case for perturbation theory. For
SAPT(DFT), U(2) constitutes only 83% of the reference
CCSD(T) interaction energy and includingU(3-∞)(KS) results
in an improvement but still recovers only 91% of the
reference. On the other hand, using theδint,resp

HF estimate of
higher-order energies results in a near perfect agreement with
CCSD(T). In contrast, for the H2O‚‚‚H3N dimer, perturbation
theory is rather rapidly convergent withU(2)[SAPT(DFT)]
and CCSD(T) differing by about 1% only. This good
agreement is made slightly worse by the addition of the
higher-order energy estimates asU(2)[SAPT(DFT)]+ δint,resp

HF

and U(2)[SAPT(DFT)] + U(3-∞)(KS) differ from CCSD(T)

Figure 1. Approximations to the higher-order induction and
exchange-induction energies for the water dimer. The relative
orientations of the water molecules are fixed at their minimum
geometry,35 and the center-of-mass separation is varied. The
minimum is located close to R ) 3.0 Å. The classical models
used a damping coefficient â ) 1.93 au (see section V in part
2).

U(3-∞) ≈ Eind,tot
(3) + Eind,d-class

(4-∞) (23)

U(3-∞)(KS) ) Eind,tot
(3) (KS) + Eind,d-class

(4-∞) (24)
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by 3% and 2%, respectively. Since these differences are small
enough to be ascribed to basis incompleteness effects, we
conclude that either estimate of the higher-order energies is
suitable for this system.

We now turn to dimers for which the induction energy
plays a relatively unimportant role. In Table 1 we report
interaction energies for three such dimers: the carbon dioxide
dimer, the benzene dimer, and the H2‚‚‚CO dimer. Results
are far more encouraging for the nonpolar dimers. For the
carbon dioxide dimer, all estimates ofU(3-∞) are very small
but still constitute about 3% of the interaction energy.
δint,resp

HF and U(3-∞)(KS) are both about-0.2 kJ mol-1, and
SAPT(DFT) interaction energies obtained using either esti-
mate of the higher-order energies results in an interaction
energy almost identical with the CCSD(T) reference. For this
particular system,U(2) from SAPT is too large in magnitude

due to a severe overestimation of the dispersion energy made
by the current implementation of SAPT.12

The benzene dimer is a rather unusual system as the
higher-order induction effects are positive in the stacked
geometry. Due to its size, no SAPT calculation was possible
for this system. Indeed, accurate reference energies for this
system are hard to obtain. The best reference energies
currently available are those from Sinnokrot et al.,37 obtained
using R12-MP2 energies together with a CCSD(T) correction
obtained using an aug-cc-pVDZ basis. Unfortunately, since
the MP2 interaction energy is particularly poor for this
system, being an overestimation by nearly 100%, the estimate
of Sinnokrot et al. is probably in error by a few percent, and
we should keep this in mind in the following comparisons.
U(2) from SAPT(DFT) differs from the estimated CCSD(T)
interaction energy differ by-7%. On adding theU(3-∞)(KS),
this difference is reduced to only-3%. The higher-order
contributions constitute about 4% of the total interaction
energy of the dimer. Basis set incompleteness effects,
estimated by Podeszwa et al.,39 are of the same magnitude
but of opposite sign. Therefore, the higher-order contributions
to the interaction energy cannot be neglected in high-accuracy
calculations, even for nonpolar systems, particularly as it is
becoming usual to estimate the complete basis set limit of
the interaction energies.

The H2‚‚‚CO dimer is the most weakly bound system
included in Table 1. SAPT(DFT) converges very quickly to
the CCSD(T) reference energy withU(2) [SAPT(DFT)] and
CCSD(T) being essentially equal andU(2)[SAPT(DFT)]+U(3-∞)

(KS) differing from CCSD(T) by only 3%. In contrast,U(2)-
[SAPT(DFT)]+ δint,resp

HF overshoots the CCSD(T) reference
by 18%. The situation is worse for SAPT energies:U(2)-
[SAPT] is already too negative by about 6%, and the
inclusion of theδint,resp

HF term makes the SAPT energy about
23% too negative. Clearly then, in agreement with Patkowski
et al.,20 the δint,resp

HF term is a very poor estimate of the
higher-order energies for this dimer. This is the only system
for which we have found this to be the case though Patkowski

Table 1. Contribution of Third- and Higher-Order Corrections to the Interaction Energy for the Water, Hydrogen Fluoride,
Carbon Dioxide, and Benzene Dimers and the H2O‚‚‚H3N and H2‚‚‚CO Complexese

method energy component (H2O)2 (HF)2 H2O‚‚‚H3N (CO2)2 (C6H6)2 H2‚‚‚CO

SAPT U(2) -18.08 -15.59 -5.803 -7.05 -1.123

Eind,tot
(30) -0.80 -0.95 -0.017 -0.12 -0.018

δint,resp
HF -2.82 -3.14 -0.098 -0.23 -0.187

U(2)+ δint,resp
HF -20.90 -18.73 -5.901 -7.28 -1.310

SAPT(DFT) U(2) -18.44 -15.38 -5.776 -5.72 -8.11c -1.066

Eind,tot
(3) (KS) -1.20 -1.41 -0.027 -0.17 +0.29d -0.023

Eind,d-class
(4-∞) -0.04 -0.02 0.00 0.00 0.00 0.00

U(2)+ Eind,tot
(3) (KS) + Eind,d-class

(4-∞) -19.67 -16.81 -5.803 -5.90 -7.82 -1.090

U(2)+ δint,resp
HF -21.26 -18.52 -5.874 -5.95 -1.253

CCSD(T) UCCSD(T) -20.45 -18.50 -5.694 -5.94a -7.57b -1.063
a Misquitta et al.12 Dispersion optimized basis augmented with mid-bond functions. b Sinnokrot et al.37 Estimate of the complete basis set

CCSD(T) energy. c Edisp
(2) was calculated in a TZ/MC+ basis set , the rest of the interaction energy components in the Sadlej/MC+ basis set.

d Computed using a Sadlej/MC+ basis set. e The first three dimers are at their equilibrium geometries, the benzene dimer is in the parallel
stacked geometry with a center-of-mass separation of 3.8 Å. H2‚‚‚CO is in the linear geometry with C toward H2 and a center-of-mass separation
of 7.8 au, and H2O‚‚‚H3N is in geometry (a) of Figure 5 from ref 36. As stated in section III, the induction energy, Eind,tot

(n) , is defined as the sum:
Eind,pol

(n) + Eind,exch
(n) . Unless otherwise specified, interaction energies were calculated using the aug-cc-PVTZ/MC+ basis, and molecular properties

needed for the damped classical model were obtained using the aug-cc-pVTZ/MC basis. All energies are reported in kJ mol-1.

Figure 2. Total interaction energies of the water dimer
obtained with SAPT(DFT) using different approximations to
the higher-order energies. SAPT and CCSD(T) interaction
energies are also shown. We have used the standard SAPT
definition of the interaction energy that includes the δint,resp

HF

correction (see, for example, eqs 4 and 5 in ref 12). All
calculations were performed using the aug-cc-pVTZ basis in
the MC+ format. The dimer geometry is the same as used in
Figure 1.
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et al.20 have found thatδint,resp
HF behaves likewise for the

argon dimer.
From Table 1 and Figure 1 we see that for all of these

dimers, the damped classical estimate of the induction effects
above third order,Eind,d-class

(4-∞) , is very small and could be
neglected without a significant loss in accuracy. Thus our
recommended approximation for the higher-order contribu-
tions to the interaction energy of a dimer is

IV.2. Many-Body Induction. In the condensed phase of
water, the two-body interaction energies have been found
to account for only about 85% of the total interaction energy
per molecule.23 The remaining 15% arises from many-body
nonadditive effects, that is, that part of the interaction energy
that cannot be represented by the sum of pairwise interac-
tions. This nonadditivity is responsible for some of the
important structural properties of water and, in particular,
has a large role to play in hydrogen bonding. The nonadditive
effects are even larger in small water clusters where they
constitute between 17% and 30% of the total interaction
energy.22,24These effects are expected to be equally important
for polar molecules other than water and must be included
in atom-atom potentials for organic molecules, which are
commonly very polar and often form hydrogen-bonded
networks.

The perturbative treatment of nonadditivity is a complex
field of research, and while there is a version of SAPT that
includes the three-body nonadditivity (see ref 7 for a review),
the computational demands are so high as to preclude its
applications to organic molecules. However, one of the major
conclusions of accurate studies on water clusters22-24 has
been that the bulk of the nonadditivity for polar systems can
be recovered using the relatively simple damped classical
polarization model (see ref 3 for a description). While the
exchange nonadditivity is not negligible for small clusters,22,24

it is less important in relative terms for large clusters and
the condensed phase, because additional coordination shells
around any given molecule increase the dispersion, induction,
and electrostatic energies but not the short-range contribu-
tions like the exchange nonadditivity.23

The damped classical polarizable model for a cluster of
molecules is again given by eqs 21 and 22, but we now take
into account all the molecules in the cluster. While the effect
of the iterations in eq 22 is quite small for the two-body
energy, iterations have a much larger role to play in larger
clusters of polar molecules. For example, in clusters of water
molecules optimized using the ASP-W4 potential,22 iterations
in eq 22 stabilize the dimer, trimer, tetramer, and pentamer
by 2.5%, 6.0%, 10.4%, and 12.3% of the total interaction
energy, respectively. These effects are clearly considerable.
Furthermore, without iterations, many-body contributions to
the interaction energy above the 3-body energies are absent
(the (3+ m)-body terms arise at themth iteration of eq 22).
Work on organic crystals also indicates that iterations
contribute strongly to the lattice energy.40

IV.3. Asymptotic Induction Energies. The asymptotic
expansion of the two-body, second-order induction energy

involves polarizability tensors and multipole moments of the
unperturbed monomers (see ref 7 for a review). For large
molecules, these molecular properties must be distributed,
that is, expressed in terms of multiple sitessusually chosen
to be the atomic centerssso as to improve the convergence
of the multipole expansion. The distribution of the multipole
moments has been the subject of many decades of research
(see refs 3 and 41 for reviews). The Distributed Multipole
Analysis (DMA) of Stone42 is widely used, and a recent
modification43 overcomes a shortcoming of the earlier
method that arose when diffuse functions were present in
the basis. The problem of distributing the polarizabilities has
proved harder, and only fairly recently have methods become
available that are suitable for molecules of 20-30 atoms and
modern basis sets, while being general enough to be
applicable to frequency-dependent polarizabilities.44,45

The frequency-dependent polarizability,Rlm,l′m′(ω), can be
defined in terms of the FDDS as

Real-space partitioning schemes have been based on ways
of defining the multipole moment operators in the above
expression so that they act on finite regions of space, defined,
for example, by using integration grids46 or by Bader’s theory
of atoms in molecules.47 Both of these methods have
shortcomings45 that make them unsuitable for practical use.
In contrast, the distribution scheme of Misquitta and Stone45

focuses on a partitioning of the FDDS. The FDDS, as defined
by eq 5, cannot be directly partitioned as the molecular
orbitals that appear in this expression are generally delocal-
ized. Rather, density-fitting48,49 is used to simplify the form
of the FDDS and then achieve the necessary site-site
partitioning.

If the auxiliary basis set used to obtain the density-fitted
FDDS in eq 10 is partitioned into contributions from
individual sites, that is,{ø} ) {ø(1), ø(2), ...}, then the FDDS
can be written as

where

Finally, using eqs 27 and 26 the distributed polarizability
for sites (a, b) is defined as

where Nlm
p ) ∫Q̂lm(r - a)øp(r )d3r , where a is a suitable

reference origin for sitea that will typically be taken to be
the nucleus.

The standard density-fitting procedure48,49 involves the
minimization of the function

where the transition densityFiV ) φiφV is approximated by
F̃iV ) ∑kDiV,køk. For the method of distribution based on

U(3-∞) ≈ U(3-∞)(KS) ≈ Eind,tot
(3) (KS) (25)

Rlm,l′m′(ω) ) ∫∫R(r , r ′|ω)Q̂lm(r )Q̂l′m′(r ′)d3rd3r ′ (26)

R(r ,r ′|ω) ≈ ∑
ab

Ra,b(r , r ′|ω) (27)

Ra,b(r , r ′|ω) ) ∑
p∈a,q∈b

C̃pq(ω)øp(r )øq(r ′) (28)

Rlm,l′m′
a,b(ω) ) ∑

p∈a,q∈b

C̃pq(ω)Nlm
p Nl′m′

q (29)

∆iV ) ∫∫[FiV(r1) - F̃iV(r1)]
1

r12
[FiV(r2) - F̃iV(r2)]d

3r1d
3r2 (30)
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eq 29 to work, it has been shown45 that the function to be
minimized must be replaced by one involving additional
constraints

whereη and λ are constants empirically determined to be
about 0.0005 and 1000.0, respectively,Ik ) ∫øk(r )d3r , so
that the last term imposes the orthogonality of the occupied
and virtual orbitals (cf. eq 9), andEiV

ab is the Coulomb
interaction between the contributions of the basis functions
of sitesa andb to the transition densityFiV and is defined as

The distributed polarizabilities obtained using this con-
strained density-fitting procedure contain nonlocal terms, that
is, terms involving pairs of distinct sites. In contrast to other
distribution methods, the nonlocal terms describing flow of
charge from site to site are very small (around 10-2 and 10-3

in magnitude) for all systems, irrespective of the type of
bonding involved. Nevertheless, nonlocal terms are best
avoided as they complicate the description unnecessarily. In
ref 45, the Le Sueur and Stone localization method50 was
used to transform the nonlocal terms into local polarizabilities
and remove the charge-flow terms altogether. The localiza-
tion by this procedure causes a deterioration of the conver-
gence properties of the model, because multipole expansions
are used to move the polarizabilities around. In principle,
this can increase the radius of divergence of the description
to be equal to the size of the molecule, thereby causing
significant losses in accuracy for large molecules. Thus, while
good results have been obtained for molecules like forma-
mide and urea, there is already an appreciable loss in
accuracy forN-methyl propanamide.45

In ref 45 it was suggested that the Williams and Stone
method44 of obtaining local polarizabilities using a fit to the
point-to-point polarizabilities could be used to refine the
polarizability model obtained from the constrained density-
fitting procedure. This can be done as follows. The point-
to-point polarizability RPQ describes the response of the
electrostatic potential at a pointQ to the frequency-dependent
potential produced by a unit oscillating point charge at point
P and is given by the expression

whereÔP(r ) ) -qP/(4πε0|P-r |) andÔQ(r ) ) -qQ/(4πε0|Q
- r |). These polarizabilities are evaluated on a random grid
of points typically between the vdW× 2 and vdW× 4
surfaces. These responses can be evaluated very efficiently
using the density-fitted form of eq 33 given in ref 45. For a
grid of N points, whereN is typically a few thousand, there
are1/2N(N + 1) responses, which can be obtained in a single
calculation. In the original Williams and Stone method, a
model is postulated comprising polarizabilitiesRtu

ab, wheret
) 00, 10, 10c, 10s, ..., . In terms of this model the responses
are given by

where T0t
Pa is the interaction tensor3 which describes the

interaction between a point charge atP and a multipoleQt

at pointa. The model polarizabilitiesRtu
ab are then obtained

by minimizing the squared difference

This procedure is very accurate and leads to a compact
description of the polarizability, but the resulting polariz-
abilities are not always positive definite. This tends to happen
for ‘buried’ atoms, i.e., atoms hidden under the van der Waals
spheres of neighboring atoms, and could, in principle, lead
to positive induction energies, which is physically impossible.

These unphysical terms can be avoided by using the
models obtained using the localized polarizabilities from the
constrained density-fitting method as ‘anchor’ values and
minimizing

where thepk are the parameters in the model, i.e., theRtu
ab

defined above,pk
0 are the ‘anchor’ values, andgkk′ are

elements of a positive definite matrix that could be taken to
be diagonal.

This combination of the Williams-Stone and Misquitta-
Stone procedures will be called the Williams-Stone-
Misquitta (WSM) procedure. Initial results using the WSM
procedure have been very encouraging and have been
presented in a recent review article.41 More extensive results
will be presented in part 2.

V. Summary
In this first part of our investigation, we have laid down the
theoretical framework for the accurate calculation of the
induction energy of clusters of organic molecules.

We have broken away from convention by identifying the
induction energy with thesumof the second-order induction
energy as defined through the polarization expansion,6,7

termedEind,pol, and its exchange counterpart, the exchange-
induction energyEind,exch. Thus, we define thenth order
induction energy asEind,tot

(n) ) Eind,pol
(n) + Eind,exch

(n) . This defini-
tion was motivated by both theoretical and numerical
considerations.

The two-body induction energy at second order in the
interaction operator,Eind,pol

(2) , is the most important contribu-
tion of the induction energy to the interaction energy of a
cluster of molecules. We have presented a density-fitted form
of the SAPT(DFT) expression forEind,pol

(2) that is both
accurate and computationally efficient. This is a natural
extension of the density-fitting technique that one of us has
used for the dispersion energy10,12and that has already been
proposedsin a different formsby Hesselmann et al.16 As
well as a reduction in the computational cost fromO(no

2 nv
2)

to O(m2) whereno andnv are the number of occupied and
virtual orbitals, respectively, andm is the number of auxiliary
basis functions, we gain by avoiding the computationally

¥iV ) ∆iV - η ∑
a,b*a

EiV
ab + λ(∑

a
∑
k∈a

DiV,kIk)2 (31)

EiV
ab ) ∫∫F̃iV

a (r1)F̃iV
b (r2)

r12
d3r1d

3r2 (32)

RPQ(ω) ) ∫∫R(r , r ′|ω)ÔP(r )ÔQ(r ′)d3rd3r ′ (33)

R̃PQ ) ∑
ab

∑
tu

T0t
PaRtu

ab Tu0
bQ (34)

S) ∑
PQ

(R̃PQ - RPQ)2 (35)

S) ∑
PQ

(R̃PQ - RPQ)2 + ∑
kk′

gkk′(pk - pk
0)(pk′ - pk′

0) (36)

Induction Energies for Small Organic Molecules: 1 J. Chem. Theory Comput., Vol. 4, No. 1, 200815



expensive 4-index Coulomb integrals needed to evaluate the
original SAPT(DFT) expression. The new formulation has
been implemented in the CamCASP program51 which was
used for all calculations ofEind,pol

(2) reported in this paper.
The two-body interaction energy has major contributions

from energies of third and higher order in the interaction
operator. These higher-order energies are predominantly
induction in nature and can contribute as much as 17% of
the two-body interaction energy for hydrogen-bonded com-
plexes. They have usually been estimated using theδint,resp

HF

correction7,17,18 which is cumbersome to calculate as it
involves a supermolecular Hartree-Fock calculation of the
induction energy and a low-order SAPT calculation. We have
proposed that these energies be approximated using the third-
order induction energy calculated using SAPT(KS), i.e.,
Eind,tot

(3) (KS). Since SAPT(KS) is the first step in a SAPT-
(DFT) calculation of the interaction energy, this entails little
additional effort.

Eind,tot
(3) (KS) has been shown to approximate the higher-

order energies rather well for non-hydrogen-bonded dimers,
where we get almost perfect agreement with the reference
interaction energies, but it underestimates them for hydrogen-
bonded dimers. For example, the interaction energy calcu-
lated using this approximation is underestimated by around
4% for the water dimer and 9% for the hydrogen fluoride
dimer, both at their global minimum geometries. The
hydrogen fluoride dimer is probably the worst case for
methods based on perturbation theory as higher-order ener-
gies are estimated to constitute about 17% of the interaction
energy at the global minimum geometry. For the non-
hydrogen-bonded dimers, the higher-order energies are
smaller but still constitute about 4% of the interaction energy.
Patkowski et al.20 were led to similar conclusions in an
investigation of the SAPT interaction energy.

With the exception of the very weakly bound H2‚‚‚CO
dimer, for the polar and nonpolar dimers studied here, we
found that theδint,resp

HF correction provides a reasonably
accurate estimate of higher-order energies. This conclusion
complements that of Patkowski et al.20 It is quite possible
that δint,resp

HF is indeed a poor estimate of the higher-order
energies for very weakly bound dimers but might be more
reasonable for the more strongly bound dimers, whether polar
of not. More data from a larger variety of systems will be
needed to test this conjecture.

Yet another way of estimating the higher-order energies
is through the damped classical polarizable model. The
classical estimate for the higher-order energy is obtained by
iterating the fields and induced multipoles self-consistently
to convergence. It is necessary to use a distributed-polariz-
ability description for all but the smallest molecules, and
the Williams-Stone-Misquitta procedure44,45 provides an
efficient and accurate route to such descriptions. (See results
provided in part 2.) We have found that the damped classical
polarizable model severely underestimates the higher-order
energies for the two-body interaction. Recall that it is
incomplete because it assumes linear response of each
molecule to external fields and neglects orbital overlap
effects. For example, it recovers less than 10% of the
interaction energy contribution from third and higher orders

for the water dimer at its global minimum geometry.
Therefore, using the damped classical model to estimate these
energies would result in an error of about 9%, or about 1.8
kJ mol-1, in the total interaction energy of the water dimer.

However, the effect of the iterations can be quite large in
clusters of polar molecules. For example, the additional
stabilization is about 12% of the total interaction energy for
the water pentamer.22 Iterations have also been shown to
make major contributions to the lattice energy of organic
crystals.40 Therefore, we do recommend that the iterated form
of the damped classical polarizable model be used in
calculations involving polar clusters.

We should perhaps emphasize that the higher-order
energies arelarger in magnitude than the basis set incom-
pleteness errors in the SAPT(DFT) calculations. Therefore
these energies cannot be ignored in accurate calculations,
especially those attempting to estimate the complete-basis-
set energy.

Our recommended expression for the total interaction
energy of a dimer calculated using SAPT(DFT)12 is

where Eelst
(1) (KS) and Eexch

(1) (KS) are the first-order electro-
static and exchange energies, respectively,Edisp

(2) and
Edisp,exch

(2) are the second-order dispersion and exchange-
dispersion energies, respectively,Eind,tot

(2) is given by eq 19,
andU(3-∞) is approximated as in eq 25. This approximation
does not include higher-order dispersion terms or nonlinear
induction effects. In Part 2 we will explore further ap-
proximations and also investigate the numerical issues
associated with calculations of the induction energy of dimers
and clusters of organic molecules.
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Abstract: In part 1 of this two-part investigation we set out the theoretical basis for constructing

accurate models of the induction energy of clusters of moderately sized organic molecules. In

this paper we use these techniques to develop a variety of accurate distributed polarizability

models for a set of representative molecules that include formamide, N-methyl propanamide,

benzene, and 3-azabicyclo[3.3.1]nonane-2,4-dione. We have also explored damping, penetration,

and basis set effects. In particular, we have provided a way to treat the damping of the induction

expansion. Different approximations to the induction energy are evaluated against accurate

SAPT(DFT) energies, and we demonstrate the accuracy of our induction models on the

formamide-water dimer.

I. Introduction
In this paper, which is the second part in a two-part
investigation1 of the induction energy, we report methods
for developing models of the induction energy that are suit-
able for applications involving organic molecules. In the first
part of our study, which we will refer to as part 1, we set
out the theoretical framework for the calculation of the non-
expanded and expanded induction energies in a way that is
suitable for clusters of organic molecules. We now use that
framework to develop the distributed polarizability models
needed to model the induction energy in the condensed phase
and demonstrate how the refinement procedure described in
part 1 can be used to obtain polarizability models that com-
bine accuracy and computational simplicity, making them
ideal for real-world applications, in particular those in the
field of organic crystal structure prediction.

The dominant part of the induction contribution to the total
interaction energy of a cluster of molecules arises from the
two-body interactions. In part 1 we argued that the SAPT-
(DFT) two-body interaction energy should be defined as

whereEelst
(1) (KS) andEexch

(1) (KS) are the first-order electro-
static and exchange energies, respectively,Edisp

(2) andEexch-disp
(2)

are the second-order dispersion and exchange-dispersion
energies, respectively, andEind,tot

(2) and U(3-∞) were defined
in part 1. The induction contribution to the two-body
interaction energy arises at second and higher orders in the
interaction operator. The most computationally efficient and
accurate method for the calculation of the two-body induction
energy at second order is based on the recently developed
symmetry-adapted perturbation theory based on density
functional theory, called SAPT(DFT)2-4 or DFT-SAPT.5

Higher-order induction energies form the bulk of the higher-
order effects for polar molecules and can be very important
for hydrogen-bonded dimers, where they can contribute as
much as 17% of the two-body energy. In part 1 we described
how induction contributions to the two-body energy that arise
from terms of third and higher order in the interaction
operator can be approximated within SAPT(KS).3,6 Since a
SAPT(DFT) calculation of the interaction energy uses
energies computed within SAPT(KS), we are now able to
calculate accurate nonexpanded induction energies within one
theoretical framework. Additionally, due to the modest

* Corresponding author phone:+44 1223 336375; fax:+44 1223
336362; e-mail: ajs1@cam.ac.uk.

† University Chemical Laboratory.
‡ University College London.

U ) Eelst
(1) (KS) + Eexch

(1) (KS) + Eind,tot
(2) + Edisp

(2) +

Eexch-disp
(2) + U(3-∞) (1)
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computational resources needed for such a calculation, we
are able to apply these methods to dimers of small organic
molecules.

What remains then is for us to model the induction energy
in a way that is suitable for calculations on clusters of polar
molecules. In such clusters, many-body induction energies
can be almost as important as the two-body induction
energies. Both can be described using the damped classical
polarizable model,7 and in fact higher-order contributions
to the many-body energy can also be obtained from this
model. The latter, which can form as much as 12% of the
total energy of the cluster, are obtained from the classical
model by iterating the fields and the responses to the fields
to self-consistency (see section IV.2 in part 1).

We need accurate molecular polarizabilities for the clas-
sical polarizable model. For all but the smallest molecules,
they are needed in a distributed form. Recently two of us
have developed a method of obtaining distributed polariz-
abilities based on a partitioning of the molecular transition
densities using a constrained density-fitting technique that
is both accurate and applicable to large molecules.8 In ref 8
we observed that the accuracy of the model deteriorates if it
is simplified to include only local polarizability terms, that
is to omit terms involving pairs of sites. This deterioration
can be overcome by refining the polarizability model by the
method of Williams and Stone.9 This two-step procedure has
an advantage over the Williams and Stone method alone,
which can lead to unphysical nonpositive-definite terms. In
the combined procedure, such terms are completely removed
from the low-ranking polarizabilities and greatly reduced in
the higher-ranking terms. In a recent review7 some prelimi-
nary results of this Williams-Stone-Misquitta (WSM)
procedure were presented, and in part 1 we gave its
theoretical basis in some detail. Here we describe the
numerical details of the procedure and present extensions
of the method that can be used to calculate local polarizability
models up to rank 2. Rank 1, that is, dipole-dipole,
polarizabilities may be sufficient for calculations of moderate
accuracy, but the higher-rank dipole-quadrupole and quad-
rupole-quadrupole terms are needed to achieve higher
accuracy. On the other hand, for applications that are so
computationally demanding as to require a simpler model,
the WSM procedure can provide the best accuracy subject
to such constraints.

At short intermolecular separations the classical polarizable
model will be in error, and the difference between the
nonexpanded induction energies calculated using SAPT-
(DFT) and the energies from the classical model will need
to be accounted for. Additionally, at short separations, the
classical polarizable model, which is based on a multipole
expansion, can result in divergent energies. This problem
arises quite often in the condensed phase. We have analyzed
the problems associated with short intermolecular separations
in some detail and have tried to provide solutions to many
of them.

This paper is organized as follows: In section II we
describe a powerful graphical technique for displaying the
model induction energies. In section III we discuss the

features of basis sets that are needed to obtain accurate
molecular polarizabilities and also SAPT(DFT) induction
energies.

The methods that we describe here for distributed polar-
izabilities can be used to obtain models of varying complexity
and accuracy. In section IV we assess these models for the
molecules shown in Figure 1, which have been chosen to
provide a range of sizes and different types of charge
distribution. Benzene tests the modeling of the polarizability
of conjugated systems, in contrast to the saturated hydro-
carbon functional groups. The other molecules give a range
of hydrogen bond donor and acceptor strengths: the imide
has a plastic phase10 indicating that the hydrogen-bonding
in its ordered polymorphs is readily disrupted.

In section V we discuss effects of penetration, truncation,
and damping and propose a way to determine the damping
coefficient based on molecular ionization energies. In section
VI we assess approximations for calculating the induction
energies. Finally, in section VII we conclude with a summary
of the main results of this paper.

I.1. A Note on Notation. The notation we have used for
the induction energies defined within SAPT(DFT) is some-
what nonstandard. We have described it in some detail in
section III of part 1, but the key ideas are summarized here
for convenience.

At order n, there are two components to the induction:
the induction as defined through the polarization expan-
sion,11,12 termedEind,pol

(n) , and the exchange component of the
induction, termedEind,exch

(n) . In part 1 we defined thenth
order induction energy as the sum of these contributions,
i.e., Eind,tot

(n) ) Eind,pol
(n) + Eind,exch

(n) . The reasons for this
definition, rather than the more conventional identification
of Eind,pol

(n) as thenth order induction, have been outlined in
section III in part 1. In brief, our choice has been made
because Coulomb singularities in the interaction operator
mean that neitherEind,pol

(n) nor Eind,exch
(n) are meaningful on

their own,13,14 and the observation that the expanded induc-
tion energy, termedEind,d-class

(n) , agrees best withEind,tot
(n) as

defined here. Numerical evidence will be provided below.

II. Displaying the Energies
A powerful way to understand the various models that will
be presented below is by mapping energies onto a suitable
surface around the molecule in question. Such a mapping

Figure 1. Molecules used to test distributed polarizability
models: (1) water, (2) formamide, (3) N-methyl propanamide
(N-MPA), (4) benzene, and (5) 3-azabicyclo[3.3.1]nonane-2,4-
dione(BOQQUT).
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can be most easily done if the energy probe has spherical
symmetry, and a convenient probe for the induction energy
is a point charge. The maps in this paper show the induction
energies that result from a chargeqeon the chosen surface.
The SAPT(DFT) expression for the induction energy of a
molecule in the field of a point charge is given by eq 17 in
part 1. The induction energy of a molecule in the field of a
point charge depends quadratically on the magnitude of the
charge, and an appropriate value ofq needs to be used in
interpreting the energy scales in these maps. Settingq ) 1
gives the response to a unit charge, but this is larger than
typical local charges in a molecule, which are not expected
to exceed 0.5e.

The surface around the molecule is constructed as follows.
If the required distance from atoma is Ra

0 (e.g., twice the
van der Waals radius for the vdW× 2 surface), then the
surface is defined byRa - Ra

0 ) 0, or equivalently by
exp[-ê(Ra - Ra

0)] ) 1, whereê is an arbitrary constant. We
define the surface for the whole molecule by∑a exp[-ê(Ra

- Ra
0)] ) 1. The effect is as if we shrank an elastic

membrane onto the union of vdW× 2 atomic surfaces, more
or less tightly depending on the value ofê; the intersections
between the vdW surfaces of neighboring atoms are smoothed
out. A value ofê ) 2 has been used for the maps shown
here. The SAPT(DFT) maps were generated using the
CamCASP program,15 and the maps using distributed po-
larizabilities were generated with the ORIENT program,
version 4.6.16

The van der Waals radii prescribed by Bondi17 have been
used for all but the hydrogen atoms that can form hydro-
gen bonds, which have their radii set to zero in order to
reflect better the small interatomic distances associated
with hydrogen bonds. The surface is then approximately
the surface of contact for neighboring non-hydrogen
atoms.

III. Choice of Basis
We will discuss the basis set requirements for obtaining
accurate molecular properties and accurate SAPT(DFT)
energies separately, because the requirements for large and
small intermolecular separations are generally quite different.
At short range orbital overlap effects become important and

we generally need to supplement the basis sets used for
SAPT(DFT) calculations with additional functions, while at
long range the multipole expansion can be used and all we
need are basis-saturated molecular properties.

III.1. Basis Set Requirements for Molecular Polariz-
abilities and Multipole Moments. The large size of even
the smaller organic molecules makes the use of basis
sets higher than triple-ú quality hard to use on a routine
basis. In fact, sufficiently accurate molecular polarizabilities
are obtained with the Sadlej basis set18,19 if used within the
linear response Kohn-Sham DFT framework described
in section IV of part 1. As an example, consider the
formamide molecule. The induction map using distributed
rank 4 nonlocal polarizabilities obtained with the Sadlej basis
is displayed in Figure 2, together with the corresponding
results for the aug-cc-pVTZ and aug-cc-pVQZ basis sets,
displayed asdifferencemaps against the Sadlej basis results.
As would be expected, the differences are very small for
the aug-cc-pVTZ basis, indicating that this basis is roughly
equivalent to the Sadlej, at least for calculations of the
induction energy. The differences are somewhat larger for
the aug-cc-pVQZ basis, but, even in this case, the largest
difference is around 1.5q2 kJ mol-1 which is an order of
magnitude less than the actual energies. For a more realistic
charge of 0.5 units, the maximum difference would be about
0.4 kJ mol-1.

We conclude that the Sadlej basis sets provide a very good
compromise between size and accuracy for our purposes.
They have been optimized for molecular properties but are
about half the size of the equivalent aug-cc-pVTZ Dunning
basis sets, thus significantly raising the limit on the size of
molecules that can be used in such calculations.

As explained in section IV of part 1, we use density-fitting
techniques in our calculations of the nonexpanded induction
energy and distributed polarizabilities. As yet, there is no
auxiliary density-fitting basis optimized for the Sadlej basis,
so in view of the similarities between the Sadlej and aug-
cc-pVTZ bases we have used the aug-cc-pVTZ auxiliary
basis instead. We have confirmed that this is a good choice
by carrying out extensive tests of molecular properties and
interaction energies.

Figure 2. Induction energy map and difference maps (kJ mol-1) arising from a charge q atomic units on the vdW × 2 surface
of formamide obtained using a rank 4 nonlocal polarizability description. In (a) is displayed the induction energy map obtained
using distributed polarizabilities calculated with the Sadlej basis set. Also shown are maps comparing the induction energies
obtained using distributed polarizabilities calculated with the (b) aug-cc-pVTZ and (c) aug-cc-pVQZ bases with the Sadlej-basis
energies.
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III.2. Basis Set Requirements for the SAPT(DFT)
Induction Energies.Monomer basis sets of triple-ú quality
are generally suitable for accurate SAPT(DFT) induction
energies if the intermolecular separation is large and overlap
effects are negligible. Basis sets with functions located only
on the atomic sites of the monomer are said to be of the
‘monomer centered’ or MC type. For intermediate and short
molecular separations where overlap effects are significant,
basis-converged SAPT(DFT) energies are obtained only with
basis sets supplemented with functions located on the nuclei
of the interacting partners.20 These are the so-called ‘far-
bond’ functions which typically comprise just thes and p
symmetry functions of the interacting monomer. To saturate
the dispersion energy, a further small set of functions is
needed in the region between the interacting moleculess
the so-called ‘mid-bond’ functions. The resulting basis set
is said to be of the MC+ type, where the ‘+’ sign indicates
the presence of the additional basis functions. Although the
mid-bond functions have a negligible effect on the induction
energies, we will include them in all SAPT(DFT) calcula-
tions, for consistency with later work.

The effect of the far-bond functions on the polarization
expression for the induction and exchange-induction energies
indiVidually is rather dramatic.20 At the minimum-energy
intermolecular separation, these energies can increase in
magnitude by 2 orders of magnitude upon inclusion of the
far-bond functions; butEind,pol

(n) is significantly quenched by
Eind,exch

(n) , at every ordern.21 Consequently, as discussed in
sections III and IV.1 of part 1, it is more useful to consider
Eind,tot

(n) , the sum of these two energies at each order.
In Figure 4 we displayEind,tot

(2) andEind,tot
(3) calculated using

the Sadlej basis in MC and MC+ basis types for the
formamide water dimer. The MC+ energies are uniformly
larger in magnitude (more negative) than the MC results.
Near the minimum-energy separations, the difference be-
tween the MC+ and MC results for geometry (a) is about 1
kJ mol-1 for Eind,tot

(2) and 0.7 kJ mol-1 for Eind,tot
(3) . For

geometry (b) the corresponding differences are about 0.5 and

0.2 kJ mol-1. These changes constitute around 6% of the
total interaction energies near the minimum-energy separa-
tions for the two configurations. These are not small effects
and cannot be ignored in accurate studies. Perhaps more
importantly from the point of view of geometry optimiza-
tions, the MC+ basis sets result in deeper wells and smaller
radial separations, particularly for the hydrogen-bonding
geometries.

The above picture remains the same if the aug-cc-pVTZ
basis is used in place of the Sadlej basis. The differences in
Eind,tot

(2) and Eind,tot
(3) calculated using these two bases are

already small (though not negligible) for the MC basis type,
and with the MC+ type, the aug-cc-pVTZ and Sadlej bases
yield essentially the same energies. We should emphasize
here that this does not mean that thetotal interaction energy
can be calculated using the Sadlej/MC+ basis. This is because
the basis incompleteness error in the second-order dispersion
energy may not be negligible in this basis.22

IV. Which Model?
With the current version of the CamCASP program, distrib-
uted nonlocal polarizabilities can be calculated up to rank 4
using the constrained density-fitting algorithm.8 If the
molecule containsns sites andlmax is the highest rank
included, the nonlocal polarizability model containsO(ns

2

lmax
2 ) polarizability components. This can be many thou-

sands for a rank 4 description of a molecule like BOQQUT,
which contains 22 atoms. The computational cost of using
such a polarizability model is already quite high for a pair
of interacting molecules. For a cluster of molecules, a model
of such complexity could be impossible to use. However,

Figure 3. Formamide water dimer geometries used in this
paper. Geometry (a) emphasizes the hydrogen oxygen
contacts and geometry (b) emphasizes the contacts between
the heavy atoms. The radial minima in the interaction energy
for geometries (a) and (b) are at approximately 4 and 5.5 bohr,
respectively.

Figure 4. The effect of far-bond functions on the second-
and third-order induction energies, respectively, for the for-
mamide-water dimer. See Figure 3 for a description of the
dimer geometries.
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dramatic simplifications in the polarizability model can be
made without significant losses in accuracy, using the
localization techniques described in section IV.3 of part 1.

In Table 1 we report the maximum and rms errors made
by several polarizability models in reproducing the induction
energies of a molecule with a unit point charge placed on
the vdW × 2 surface (as described in section II). Notice
that the exchange part is zero in this case, because the point
charge carries no electrons, so we are studying the ability
of distributed polarizability models to reproduceEind,pol. The
exchange part is not negligible in general, but it is short-
range in form and cannot in any case be described by a
classical polarizability model.

The rank 1 nonlocal models are clearly inadequate, with
maximum and rms errors in the range 3-8 kJ mol-1 or, for
a more realistic charge of 0.5e, between 1 and 2 kJ mol-1.
These errors are dramatically reduced in the rank 2 nonlocal
models and are still better for the rank 3 models for which
the errors are only a few tenths of a kJ mol-1. The rank 4
nonlocal models offer negligible improvements over the rank
3 models.

Curiously, at rank 1, the Le Sueur and Stone23 localization
technique results in local models that aremore accuratethan
the nonlocal models they were constructed from. At present
we do not understand why this is so. It is surprising because,
as has been mentioned earlier, the Le Sueur and Stone
localization procedure uses truncated multipole expansions
to transform the nonlocal terms away, a procedure which is
expected to cause a deterioration in the convergence proper-
ties of the model by increasing its sphere of divergence.

At rank 2 we see that the Le Sueur and Stone procedure
does indeed lead to a deterioration compared with the
nonlocal models. While the rms errors are slightly improved
over the rank 1 local models, with the exception ofN-methyl
propanamide, the maximum errors are much larger, being
in the range 4-8 kJ mol-1, or, for a charge of 0.5e, 1-2 kJ
mol-1. These errors are probably too large for most applica-
tions.

We can obtain more accurate local models by refining the
results of the Le Sueur and Stone localization procedure, as
described in section IV.3 of part 1. For this refinement, which
is the last stage in the WSM procedure, we need to choose
the coefficientsgkk′, in eq 36 in part 1, which determine the
weight given to the ‘anchors’ of the polarizability values.
We have found that the following values lead to accurate
models while minimizing the occurrence of unphysical terms:

The dipole-dipole polarizabilities from the constrained
density-fitting and Le Sueur and Stone procedure are usually
quite accurate, so they are used as anchor values and given
nonzero weight, while the higher ranking polarizabilities can
be quite poor and are given zero weight in the WSM
procedure. The accuracy of the polarizability descriptions
obtained from the constrained-DF method varies considerably
with molecule size, so a system-dependent weight might yield
better results. While the above choice of the weights has
been found to be appropriate for all the molecules studied
in this work, it is possible that there will be exceptions which
will require another choice. In general, the errors made by
the models in reproducing the point-to-point polarizabilities
or the induction energy with a point charge (see below)
should be monitored. As a rule of thumb, the maximum and
rms errors in the point-to-point polarizabilities as percentages
of the range8 should be less than 6% and 0.2%, respectively,
for a rank 1 model and less than 2% and 0.05% for a rank
2 model.

From Table 1 we see that the WSM rank 1 local models
are already rather good, with maximum and rms errors of
around 3 and 1 kJ mol-1, respectively, for unit probe charge.
At rank 2, the WSM models are good for all molecules. In
all cases, the rms errors are only a few tenths of a kJ mol-1.
Maximum errors are somewhat larger at around 1-2 kJ
mol-1. These are all for unit charge and would be smaller
by a factor of 4 or so for a more realistic charge.

In Figure 5 we show difference maps of the induction
energy of the formamide molecule in the field of a unit point
charge, computed using the nonlocal models, local models,
and WSM local models, respectively. The large errors in the
nonlocal rank 1 model, particularly near the oxygen and the
polar hydrogen atoms, are quite clearly displayed. These
errors are reduced in the rank 1 local model and are still
smaller in the WSM rank 1 local model. The largest residual
errors always seem to occur in the same regions, perhaps
indicating the need for higher ranking polarizabilities on
some sites than on others. At rank 2, the nonlocal model is
in almost perfect agreement with SAPT(DFT), but the local
model obtained using the Le Sueur and Stone localization
method exhibits rather large deficiencies near the polar
hydrogens. These are removed in the WSM rank 2 local
model which is comparable in accuracy to the rank 2 nonlocal
model.

By and large, the behavior of the polarizability models
for N-methyl propanamide, benzene, and 3-azabicyclo[3.3.1]-

Table 1. Maximum and rms Differences between the
Model and SAPT(DFT) Second-Order Induction Energies
of the Molecule Interacting with a Unit Charge on the vdW
× 2 Surfacea

formamide N-MPA benzene BOQQUT

model max rms max. rms max rms max rms

NL1 5.40 2.79 7.63 3.95 5.35 3.84 7.35 4.93
NL2 1.48 0.48 1.42 0.57 1.60 0.66 1.92 0.78
NL3 0.57 0.27 0.36 0.17 0.30 0.19 0.54 0.15
NL4 0.56 0.26 0.37 0.17 0.27 0.17 0.57 0.14
L1 3.93 1.90 5.56 2.30 3.34 1.98 5.08 2.35
L2 6.85 1.37 4.66 2.02 3.71 1.74 7.90 1.75
L1,WSM 3.48 1.35 2.32 0.74 2.98 1.58 2.48 0.82
L2,WSM 1.14 0.27 1.29 0.21 0.69 0.25 2.27 0.23
L2/L1,WSM 1.18 0.34 0.99 0.34 0.67 0.42 1.48 0.32

a ‘NLn’ denotes a nonlocal model of rank n, ‘Ln’ denotes a local
model of rank n obtained using the Le Sueur and Stone23 localization
method, and ‘Ln,WSM’ denotes a refined, local model of rank n
obtained using the WSM procedure. The mixed-rank descriptions are
denoted by ‘L2/L1’. This means we have used a rank 2 local
description on the heavy atoms and a rank 1 local description on the
hydrogen atoms. All differences are reported in kJ mol-1.

gkk′ ) 0 if k * k′

gkk ) {10-5 if k ∈ {10, 10c, 10s}
0 otherwise } (2)
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nonane-2,4-dione (BOQQUT) are similar to those for for-
mamide, so we will comment only briefly on the models
for these systems. The SAPT(DFT) induction energy maps
and difference maps for the WSM rank 1 and rank 2 local
models for these molecules are displayed in Figure 6. It is
clear that the WSM rank 1 local models consistently
underestimate the induction energy arising from a point
charge, while the WSM rank 2 models offer consistently
higher accuracy. This underestimation is notably severe for
the benzene molecule, because theπ-orbitals need to be
described by rank 2 polarizability terms.

More accurate models are possible, but only if we are
willing to accept the presence of unphysical terms. Even in
the present models, some of the quadrupole-quadrupole
polarizabilities violate the requirement of positive-definite-
ness, but, in the absence of any constraints, even the dipole-
dipole terms are not always positive-definite.

The distributed polarizability calculations on BOQQUT
brought to light a potential problem with the WSM procedure
as currently implemented. BOQQUT is a fairly large
molecule and possesses a plane of symmetry. We first
calculated refined polarizabilities for this molecule using
point-to-point polarizabilities calculated on a grid of 1000
points. The resulting rank 2 local model significantly broke
the symmetry of the molecule, because the grid of points
used for calculating the point-to-point polarizabilities was

chosen at random and did not respect the symmetry of the
molecule. The asymmetry could have been avoided simply
by ensuring that the parameters of the polarizability model
were correctly symmetrized, and we normally do this, but
the use of unsymmetrized parameters allowed us to assess
the quality of the grid, by determining how large the grid
needed to be before the asymmetry was numerically negli-
gible. For BOQQUT, a grid of 2000 points, or over 2 million
point-to-point polarizabilities, proved to be adequate. The
calculation of the point-to-point polarizabilities needed less
than 2 h of CPUtime on a single processor. This is due to
the computational efficiency of the density-fitting-based
algorithm8 that has been implemented in the CamCASP
program15 and used for the point-to-point polarizabilities.

V. Penetration, Truncation Errors, and
Damping
The multipole expansion provides us with a computationally
efficient means of calculating the induction energy. However
the resulting energies will be in error for a number of reasons,
which must be addressed if we are to ensure accurate
interaction energies.

(1) The multipole series are expansions in inverse powers
of the intersite distanceRab, so they diverge when the sites
coincide. The multipoles and polarizabilities that appear in
the damped classical polarizable model (eqs 21 and 22 in

Figure 5. Difference maps of the induction energy (kJ mol-1) arising from a charge q atomic units on the vdW × 2 surface of
formamide using distributed nonlocal description of ranks 1, 2 and 3, distributed local description of ranks 1 and 2 obtained from
the nonlocal models using the Le Sueur and Stone localization technique,23 and WSM distributed local descriptions of ranks 1
and 2. The differences are taken against SAPT(DFT) second-order induction energies obtained using a molecular description
with the Sadlej/MC basis set.
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part 1) treat the electron charge distribution as if it were
concentrated at the local origin. That is, the finite extent of
the charge distribution is neglected and orbital penetration
effects are absent. The exchange part of the induction energy
is also absent from the multipole expansion. These features
result in a ‘penetration error’. The true damping functions
if one could be foundswould account for this error.

For the second-order two-body induction energy, the
divergence occurs at small enough intersite distances that it
can be ignored, except for Monte Carlo simulations where a
trial step is taken without regard to energy. Nevertheless,
when iterations are included in the damped classical polariz-
able model (part 1, section IV.2) the role of the damping
becomes more important. This can be seen from eq 22 in
part 1, for at themth iteration, the expression involves the
product of m + 1 damping functions. The number of
iterations needed for convergence increases as the intersite
distance decreases, so the cumulative effect of the damping
increases.

(2) Additionally, in practice, the multipole expansion must
be truncated at a low rank. This introduces a ‘truncation
error’.

These sources of error need to be accounted for in accurate
calculations of the interaction energies. This can be done
using comparisons with the nonexpanded energies. While

this comparison is quite straightforward for the electrostatic
energy,7 it is much less straightforward for the induction
energy, because it is not immediately clear which SAPT-
(DFT) energies we should be using as a reference.

It has generally been assumed that the expanded induction
energies approximate the induction energy from the polariza-
tion approximation. After all, the former is derived from the
latter by using the multipole-expanded form of the interaction
operator.24 For example, in the absence of iterations, the
expanded induction energies,Eind,d-class

(2) , have been ex-
pected to approximateEind,pol

(2) . From the discussion in
section IV.1 of part 1 and section III, it should come as no
surprise that this is generally not the case.Eind,d-class

(2) does
indeed approximateEind,pol

(2) rather well if medium-sized
monomer basis sets are used.7 This is because the spurious
tunneling effects discussed in section IV.1 of part 1 and,
consequently, the exchange-induction energies are small for
such basis sets. However, when large monomer basis sets
are used, and especially with the MC+ basis type, the
spurious tunneling effects are quite large and result in large
(negative) values forEind,pol. In such a case,Eind,exch is also
large (and positive) and quenchesEind,pol quite substantially.
These tunneling effects are completely absent from the
expanded form of the induction energy based on eq 21 in

Figure 6. Induction energy maps and difference maps (kJ mol-1) with the Sadlej basis arising from a charge q atomic units on
the vdW × 2 surfaces of the N-methyl propanamide (top row), benzene (middle), and BOQQUT (bottom) molecules. The induction
energy maps have been obtained using SAPT(DFT). The difference maps for the WSM rank 1 and rank 2 local polarizability
models have been taken against the corresponding SAPT(DFT) second-order induction energies obtained using molecular
descriptions with the Sadlej/MC basis set. The scale used for the difference maps is the same for all three molecules and is
shown for N-methyl propanamide only.
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part 1. At present we cannot tell whether it is more
appropriate to compareEind,d-class

(2) with Eind,pol
(2) , calculated in

the monomer basis set, or withEind,tot
(2) , that is, the sum of

Eind,pol
(2) andEind,exch

(2) , calculated with the MC+ basis set. The
former will include some spurious effects; in the latter they
will be larger but partly cancelled out. We are currently
investigating this question, but for the present work we use
the latter choice in the comparisons of the expanded models
below.

We now illustrate the points discussed above with the
noniterated induction energies, i.e.,Eind,d-class

(2) , calculated
for the formamide-water dimer using the Sadlej/MC+ basis
set. Figure 7 shows the energy difference∆E ) Eind,d-class

(2)

- Eind,tot
(2) . The two dimer geometries used, though some-

what artifical, serve the purpose of representing the two main
types of intermolecular interactions: geometry (a) is a
hydrogen-bond-like interaction with the hydrogen on water
making close contact with the oxygen on formamide, and
geometry (b) is a nonpolar interaction with the oxygen on
water in close contact with the carbon on formamide. First
we focus on the results without damping. The rank 4 nonlocal
model provides an excellent description for both geometries,
with energy differences less than 0.2 kJ mol-1 for physically
relevant intersite separations. The rank 3 nonlocal model (not
shown) gives very similar results to the rank 4 model, which

suggests that increasing the rank above 4 will not improve
the description significantly. Therefore the residual difference
must be due to orbital penetration (a positive energy
difference) and the divergence of the multipole expansion
at short-range (a negative energy difference). Being of
opposite signs, these two effects partially cancel. For
geometry (a), the relatively small charge density on the
hydrogen atom and the small intersite distance means that
the divergence of the multipole expansion is the dominant
effect and the rank 4 nonlocal model needs net damping;
but for geometry (b), the opposite is the case, and the rank
4 nonlocal model needs a net enhancement at short intersite
separations.

The rank 1 and 2 local models behave in a similar manner.
However, while all three models result in similar energies
for geometry (a), the rank 2 model is substantially better
than rank 1 for geometry (b). This probably indicates the
importance of higher ranking terms in the polarizability
description of the heavy atoms.

We now turn to the issue of damping. As has been
mentioned above, the damping function has to account for
penetration effects and eliminate the divergence of the
multipole expansion that occurs at small intersite distances.
These two effects are of opposite signs and very likely
depend differently on the intersite separation, as is the case
for geometry (b) in the formamide water example. In
practical applications the damping function must also
compensate for truncation effects, which can complicate the
picture quite substantially, as we have seen from the above
example. It is unrealistic to expect to find a universal
damping function capable of accounting for all these effects.
The damping function will have to depend on the sites
involved and will probably have to be larger than unity at
intermediate distances, where enhancement is needed to
account for truncation and penetration effects, and less than
unity at short distances, to cancel out the short-range
divergence of the multipole expansion. Such a function has
been proposed for the dispersion energy,25 but to the best of
our knowledge, not for the induction energy.

We believe that the best we can do at present is to damp
out the short-range divergence of the multipole expansion.
This is especially necessary in calculations of the induction
energy of clusters of polar molecules. Intersite distances can
be quite small in such clusters, because cooperative induction
effects can be quite large and compensate for the unfavorable
exchange energies associated with small intersite distances.
In such cases, an undamped multipole expansion will result
in nonsensical induction energies, particularly when iterations
are included in the evaluation of eqs 21 and 22 in part 1. A
convenient choice for the damping functions are those due
to Tang and Toennies26 which have had the greatest success
in the generation of high-accuracy potentials for small
dimers. This will leave a residual error arising from trunca-
tion and penetration effects which can, in principle, be
accounted for using an overlap model.7

We are then led to the problem of determining the damping
factor to be used in the damping functions. It is often
assumed that the damping factor can be determined by a
comparison of the expanded and nonexpanded energies.

Figure 7. Errors in the expanded induction energy for the
formamide-water dimer. The energy difference plotted on the
y-axis is defined as ∆E ) Eind,d-class

(2) - Eind,tot
(2) , so a positive

∆E means that the expanded energies are not attractive
enough. The SAPT(DFT) Eind,tot

(2) energies have been calcu-
lated with a Sadlej/MC+ basis. Results are displayed for two
relative orientations of the formamide and water molecules
as described in Figure 3. The dotted vertical lines mark the
approximate minimum-total-energy separations. Notice that
the damped and undamped rank 1 curves for geometry (b)
are almost identical. All local polarizability models have been
obtained using the WSM procedure.
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Given the observations of the above paragraphs, such a
comparison is fruitless as it would suggest an antidamping.
An alternative procedure has been to use the exponential
parameter in the Born-Mayer term from a fit to the exchange
energies as the damping parameter. This could, in principle,
be done on a site-site basis to obtain damping parameters
that depend on the pair of sites involved. The argument for
this approach is that the exchange-repulsion and damping
are both consequences of the wave function overlap. Perhaps
a simpler method of determining the damping factorâ,
though one that depends only on the interacting molecules
and not on the individual interacting sites, is based on the
considerations presented in Chapter 6 of ref 24 and goes as
follows: The potential due to the electronic density of a

hydrogen-like atom with wave functionψ(r) ) xR3/π e-Rr

is

The first term in this equation is the multipole expansion of
a spherical electron cloud and the second is the penetration
correction. This potential can be rewritten as

so thatf1 is the damping function that correctly incorporates
the penetration effect. This result can be plausibly, though
not rigorously, generalized to an arbitrary wave function by
using the asymptotic form of the wave function27

whereI is the vertical ionization potential. We now see that
the damping factor should be

where everything is in atomic units, soâ is in bohr-1 if I is
in Hartree. For most organic molecules, this results in an
atom-atom damping function with a damping constant
between 1.9 and 1.7. For mixed dimers, we suggest using
the damping factorâ ) x2IA + x2IB. This choice is
plausible as it is the coefficient ofR in the exponential factor
of the density-overlap function.

There is reason to believe this is a good choice for the
damping factor, but there may be cases for which the issue
of damping will have to be re-examined. Numerical evidence
from calculations of the induction energy of organic crystals28

indicates that above damping factor is not only appropriate
but also essential when the rank 2 models needed for high
accuracies are used. Welch et al.28 have observed that without
damping the small intersite distances present in some organic
crystals can lead to very large and unphysical crystal
induction energies. However, using the above damping factor
leads to a rational progression of the crystal induction energy
with rank of the polarizability description. As would be
expected, damping has the largest effect on the higher
ranking models.

However, there will be molecules for which a single
damping factor may be too simplistic. Our definition ofâ
involves the ionization potentials of the molecules. For a
large molecule, with very different functional groups, it may
be necessary to use a different ionization potential for each
of the functional groups. This would then lead to a damping
factor that depended on the pair of interacting groups. We have
not yet investigated such a possibility.

In the formamide-water example, using ionization poten-
tials of 0.375 au and 0.464 au for formamide and water,
respectively, we obtainâ ) 1.83. From Figure 7 we see that
after damping all models exhibit a positive energy difference
which is a combination of penetration effects and truncation
errors. From the modeling point of view, their uniformity
makes these differences simpler to handle than those made
by the undamped models. For example, as suggested in ref
7, the overlap model29 could be used to model the residual
energy differences. We are currently working on a methodol-
ogy to make this possible on a routine basis.

VI. Approximations
The many issues discussed in the preceding sections are
important in high-accuracy calculations of the interaction
energy. However, for many applications, it may be sufficient
to achieve a moderate accuracy. Indeed, for large systems,
some of the prescriptions given above may not even be
feasible due to lack of computational resources. Here we
discuss the approximations most useful in calculations on
large systems and test their accuracy.

VI.1. Calculating Eind,tot
(2) and Eind,tot

(3) Using a Monomer
Basis. In section III we have argued that the ‘far-bond’
functions that are part of the MC+ type of basis should be
used in order to obtain basis-saturated induction energies.
Since the far-bond functions are placed at the locations of
the nuclei of the interacting partner, this means that the MC+

basis set depends on the dimer geometry. This in turn means
that the calculation of the Hessians (eqs 7 and 8 of part 1),
which is the most computationally expensive step in the
evaluation of the induction energy, needs to be repeated for
each dimer geometry. This can be computationally prohibi-
tive and would be avoided if the monomer basis (MC) were
to be used. Furthermore, there is good evidence to suggest
that the MC+ basis type introduces significant errors in the
first-order energies30 for which the MC type should be used.

The first-order energies are reasonably well converged with
the Sadlej/MC basis set. The problems lie with the second-
order energies. Both the induction and dispersion energies
are insufficiently converged in this basis. As we saw in
section III, the so-called mid-bond basis functions that are
included in the MC+ basis type are needed to obtain basis-
converged dispersion energies. Like the far-bond functions,
the mid-bond basis functions also make the basis set
dependent on the dimer geometry. Neglecting the mid-bond
functions will introduce significant errors in the dispersion
energy which will complicate the discussion of the induction
energy calculations. Therefore, for the purposes of the present
paper, we will avoid discussing the basis convergence issues
associated with the dispersion energy by using dispersion

V(r) ) - 1
r

+ e-2Rr(R + 1
r ) (3)

V(r) ) - 1
r

f1(2Rr), wheref1(2Rr) ) 1 - e-2Rr(1 + Rr) (4)

ψ(r) f e-x2Ir
(5)

â ) 2x2I (6)
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energies computed using the Sadlej/MC+ basis. We will
denote the basis types for these mixed basis calculations by
‘MC*’.

In Figure 8 we display total interaction energies for the
formamide-water dimer obtained using different basis sets.
For the MC* basis type only theU(3) potentials are shown,
sinceU(2) ≈ U(3) for this basis type. This is becauseEind,tot

(3) is
negligibly small when computed using monomer basis sets,
as should be apparent from Figure 4.U(3) from the Sadlej/
MC* basis results in potentials that are consistently too
shallow, particularly for the hydrogen-bonded geometry (a).
A considerable improvement is obtained if the aug-cc-pVTZ/
MC* basis is used. For both geometries, this basis gives
potential curves in good agreement with theU(2) potential
obtained with the Sadlej/MC+ basis set. Therefore the aug-
cc-pVTZ/MC* basis is a viable alternative to the dimer-
geometry dependent Sadlej/MC+ basis.

It must be borne in mind that the aug-cc-pVTZ/MCbasis
is twice the size of the Sadlej/MC basis and larger even than
the Sadlej/MC+ basis. Therefore, while the aug-cc-pVTZ/
MC basis allows fairly accurate induction energies to be
evaluated for all dimer geometries using Hessians calculated
just once, it does entail a significant increase in the
computational cost of evaluating the Hessians.

VI.2. Neglecting the Higher-Order Two-Body Energies.
The calculation of the higher-order energies using eq 25 in
part 1 is the most time-consuming part of a SAPT(KS)
calculation. Its computational scaling is dominated by the
evaluation ofEind,exch

(3) [KS] which scales asO(no
2nv

3), where
no and nv are the number of occupied and virtual orbitals,
respectively. From the discussion in section IV.1.2 of part 1
we know that the higher-order energies cannot be neglected
in systems that exhibit strong hydrogen bonds, such as water
and hydrogen fluoride, but their effect is far less in other
systems and may even be negligible. In Figure 8 we display
total interaction energies for the formamide-water system
in the two representative geometries used in earlier discus-
sions. In geometry (a), the hydrogen-bonded geometry, the
U(3) potential curve is deeper thanU(2). Using the U(2)

potential curve would result in a slightly longer formamide-
water bond, but the errors are not large and could well be
acceptable in calculations of moderate accuracy.

The situation is far better for the non-hydrogen-bonded
geometry (b). Here theU(3) potential curve is only slightly
deeper thanU(2), which could be used with almost no loss
in accuracy.

Figure 8. Total interaction energies for the formamide-water
dimer using different basis sets. U(2)and U(3) are the total
SAPT(DFT) interaction energies up to second and third order,
respectively. Calculations have been performed using the
MC+ and MC basis types. The latter basis has been labeled
as ‘MC*’ because, for reasons explained in the text, the
dispersion and exchange-dispersion energies have been
calculated using the MC+ basis. The U(2) and U(3) potential
curves with the MC* basis are very similar, so, for clarity, only
the latter are displayed. Results are displayed for two relative
orientations of the formamide and water molecules as de-
scribed in Figure 3. For geometry (b), the U(3) aTZ/MC* curve
is almost obscured by the U(2) Sadlej/MC+ and U(3) Sadlej/
MC+ curves.

Figure 9. Total interaction energies for the formamide-water
dimer. U(2) and U(3) are the SAPT(DFT) interaction energies
at second and third order. Approximations to U(2) are labeled
U(2)/Ln,WSM,(damp). This notation means that the SAPT(DFT)
induction energies have been replaced by the induction
energies obtained from a damped classical polarizable model
with iteration, using a distributed polarizability model of rank
n on both molecules. Results are displayed for two relative
orientations of the formamide and water molecules as de-
scribed in Figure 3. For geometry (a), the U(2)/Ln,WSM and
U(2)/Ln,WSM,damp curves are just above the U(3) and U(2)

curves, respectively. For geometry (b), damping has almost
no effect on the energies, so the damped and undamped
curves are indistinguishable. All local polarizability models
have been obtained using the WSM procedure.
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VI.3. ReplacingEind,tot
(2) and Eind,tot

(3) by Eind,d-class. An
approximation that is commonly used is to avoid calculating
the nonexpanded induction energies altogether by using the
expanded induction instead. From Figure 7 it should be
apparent that this approximation would be rather good if the
undamped rank 4 nonlocal polarizability description were
used on both molecules, but this description is very elaborate
and would probably be impossible to use in clusters of
molecules. The rank 1 and rank 2 local polarizability
descriptions are more practicable but less accurate. The
accuracy can be improved slightly by using the iterated form
of the polarizability models.

We will use U(2)/Ln,WSM,(damp) to denote the total
interaction energy obtained by replacingEind,tot

(2) and Eind,tot
(3)

with Eind,d-class, wheren denotes the rank of the (possibly
damped) local polarizability model. In Figure 9 we display
total interaction energies obtained using these approxima-
tions. For geometry (a), bothEind,tot

(2) /L1,WSM,damp and
Eind,tot

(2) /L2,WSM,damp are reasonably good approximations
to U(2). Curiously, the undamped approximations are very
close toU(3). For geometry (b), all approximations fare well,
with the rank 2 models being the more accurate. Damping
has a very small effect on the energies here. Therefore,U(2)/
L2,WSM,damp is a viable approximation to the total interac-
tion energy in both cases.

Table 2 shows results for some other small dimers at
equilibrium or near-contact geometries. Here too the results
are generally satisfactory.

The computational cost of evaluating the induction energy
using the rank 1 or 2 local polarizability models is much
lower than the cost of evaluatingEind,pol

(2) andEind,exch
(2) within

SAPT(DFT). This is true even if the SAPT(DFT) energies
are calculated using the MC type of basis. Additionally, we
see from Figures 8 and 9 thatU(2)/Ln,WSM,(damp) is a better
approximation to the interaction energy than calculatingU(2)

in the Sadlej/MC* basis. This is particularly welcome for
applications involving large molecules for which we may
be able to calculate molecular properties but not the SAPT-
(DFT) interaction energies. The relatively good accuracy of
the U(2)/Ln,WSM,(damp) approximation also helps explain
why ab initio intermolecular potentials that used multipole
expansion for the induction energy, such as the ASP water
potential,32 have been so successful.

VI.4. Mixed-Rank Polarizability Descriptions. There
will be situations where polarizability models of mixed rank
can be used. For example, an accurate description of the

polarizability of benzene can be obtained with rank 1
polarizabilities on the hydrogen atoms and rank 2 terms on
the carbon atoms.9 For large, compact molecules, it may be
desirable to simplify the polarizability model by reducing
the rank of the description of those atoms hidden under the
van der Waals spheres of neighboring atoms or even omitting
them altogether from the model. Further simplifications can
be achieved by enforcing symmetries of functional groups
or eliminating small terms in the polarizability model. All
of these simplifications can be incorporated in the WSM
procedure described in section IV.3 of part 1. This procedure,
together with the constrained density-fitting distribution
method, gives us the flexibility to choose an appropriate
polarizability description while avoiding unphysical terms
in the polarizability description as far as possible.

In Table 1 we report the maximum and rms errors in
polarizability models using a rank 2 description on the heavy
atoms and a rank 1 description on the hydrogens. The rms
errors in these mixed-rank polarizability descriptions are
comparable to those made by the more complex rank 2
descriptions, while the maximum errors, which tend to occur
near the hydrogen atoms, are significantly smaller for the
larger molecules studied here. Additionally, there is far less
loss of positive-definiteness in the mixed-rank descriptions
as it is the quadrupole-quadrupole polarizability terms on
the hydrogen atoms that tend to be negative.

In the case of BOQQUT, the mixed-rank description has
nearly half as many nonzero polarizability components as
the rank 2 description. The mixed-rank description of the
formamide molecule results in induction energies of the
formamide water dimer that are almost identical to those from
the rank 2 local description.

We therefore have good physical and computational
reasons for using the mixed-rank polarizability descriptions
and strongly recommend use of these models in favor of the
more complex and less physical rank 2 models.

VII. Summary
We have provided a theoretical and numerical framework
for the accurate calculation of the induction energies of
clusters of organic molecules. These are large systems and
pose quite different problems from those that have faced the
high-accuracy, small-molecule community. These problems
can be broadly classified as those concerned with the
theoretical details of the induction energies at second and
higher order in the interaction operator and those concerned

Table 2. Contribution of Third- and Higher-Order Corrections to the Interaction Energy for the Water, Hydrogen Fluoride,
Carbon Dioxide, and Benzene Dimers and the H2O‚‚‚H3N and H2‚‚‚CO Complexesa

(H2O)2 (HF)2 H2‚‚‚H3N (CO2)2 (C6H6)2 H2‚‚‚CO

Eind
(2) SAPT(DFT) -5.164 -6.687 -0.479 -0.866 -0.885 -0.122

Eind,tot
(2) /L1,WSM,damp -3.932 -4.268 -0.361 -0.358 -0.599 -0.073

Eind,tot
(2) /L2,WSM,damp -4.507 -5.303 -0.357 -0.474 -0.710 -0.080

Eind,tot
(2) /NL4,damp -5.051 -5.647 -0.420 -0.619 -0.754 -0.081

a The first three dimers are at their equilibrium geometries, and the benzene dimer is in the parallel stacked geometry with a center-of-mass
separation of 3.8 Å. H2‚‚‚CO is in the linear geometry with C toward H2 and a center-of-mass separation of 7.8 au, and H2O‚‚‚H3N is in geometry
(a) of Figure 5 from ref 31. L1,WSM and L2,WSM denote damped, noniterated, classical induction energies evaluated using local rank-1 and
rank-2 polarizabilities refined using the WSM procedure, and NL4 denotes damped energies obtained from nonlocal rank-4 polarizabilities.
Molecular properties needed for the damped classical model were obtained using the aug-cc-pVTZ/MC basis. All energies are reported in kJ
mol-1.
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with numerical details and the development of models
suitable for applications.

VII.1. Model Induction Energies. Accurate molecular
polarizabilities and multipole moments are needed for
modeling of the induction energy of clusters of molecules.
For all but the smallest of molecules, these properties need
to be distributed. The problem of distributing the multipole
moments has already been addressed33,34 in a satisfactory
manner. Here we have proposed and demonstrated an
accurate and versatile method of obtaining distributed
polarizabilities that is suitable for molecules of as many as
30 atoms or so. Our distribution scheme for the polarizabili-
ties is based on the methods of Williams and Stone9 and
our constrained density-fitting method.8 By combining the
strengths of these two methods, we have obtained a distribu-
tion procedure with properties that make it ideal for high-
accuracy calculations on systems of large molecules.
The main features of this distribution scheme are as
follows:

(1) The underlying theory used in the polarizability
calculations is coupled Kohn-Sham theory (CKS), also
known as Kohn-Sham linear response theory. Molecular
properties obtained using CKS theory can exceed coupled-
cluster methods in accuracy when used with a modern density
functional like PBE035 with asymptotic corrections,36,37thus
ensuring an accurate polarizability description at modest
computational cost. In the form used in this paper and
implemented in the CamCASP program,15 the CKS equations
are solved with a computational effort that scales asO(no

3

nv
3), but this scaling can be reduced using density-fitting

techniques.5,38,39With the current implementation of the CKS
equations we have been able to compute the properties of
the 3-azabicyclo[3.3.1]nonane-2,4-dione (BOQQUT) mol-
ecule, containing 22 atoms, in less than a day of CPU time
on a single Opteron processor using the Sadlej basis set. With
the density-fitted form of these equations we expect to be
able to perform calculations on even larger systems.

(2) We have tested localized distributed polarizability
models of rank 4 for small molecules and rank 2 or 3 for
the larger molecules. In principle, local descriptions up to
rank 4 could be generated for all molecules, but rank 2 should
be sufficient.

(3) Non-positive-definite polarizability tensors do not occur
in the dipole-dipole polarizabilities, and at higher rank they
arise mainly for the hydrogen atoms. Consequently, this
problem is smallest in the mixed-rank models.

(4) There is no fundamental limit to the size of the basis
sets that can be used, though computational limitations will
restrict it in practice.

(5) Finally, one of the most powerful features of the
distribution scheme proposed here is that it gives us the
ability to choose any reasonable polarizability model and
yet obtain an accurate, physically correct, local polarizability
model.

We have tested this Williams-Stone-Misquitta (WSM)
distribution scheme using the formamide andN-methyl
propanamide molecules and have also generated local
polarizability models of ranks 1 and 2 for benzene, BO-
QQUT, and other molecules,28 only some of which have been

reported in this paper. The rank 2 local description is
comparable in accuracy to the much more complex rank 4
nonlocal models. The rank 1 models underestimate the
induction energy, particularly around the heavy atoms. Mixed
rank models with a rank 2 description on the heavy atoms
and rank 1 on the hydrogen atoms offer a good compromise
between accuracy and simplicity.

The newly developed visualization techniques recently
implemented in the ORIENT program16 have given us a very
powerful means of evaluating the polarizability models. By
3-dimensional visualization of the induction maps or error
maps made against accurate SAPT(DFT) induction energies,
we were able to make assessments of the shortcomings of
these models. The 3-D maps enable us to identify sites at
which a particular polarizability description may be deficient.
This proves invaluable in designing accurate polarizability
models where a mixed rank description may be necessary.

VII.2. Numerical Aspects.One of the main considerations
in any ab initio calculation is the type of basis set to be used.
It will not usually be possible to use large basis sets in
calculations on organic molecules of the size considered in
this paper, so we have attempted to determine which basis
sets are good enough for calculations of the induction energy.
The necessary level of accuracy will depend on the applica-
tion, but for systems of organic molecules with dimer binding
energies of 10-20 kJ mol-1, basis set incompleteness errors
of less than a few tenths of a kJ mol-1 at the important dimer
geometries are probably acceptable.

From numerical tests on a variety of molecules (only one
example was reported here), we recommend the Sadlej basis
sets18,19for calculations of molecular multipole moments and
polarizabilities. Auxiliary basis sets tuned for the Sadlej bases
are not available, but we have found that the aug-cc-pVTZ
auxiliary basis,40,41 though probably too large, works very
well. With these basis sets, very accurate polarizability
models can be obtained. Comparisons with the much larger
aug-cc-pVQZ basis show that the maximum error made by
the Sadlej basis models is about 1.5 kJ mol-1 on the vdW×
2 surface in the field of a unit point charge. For a more
realistic charge of 0.5 units, this would be an error of only
0.4 kJ mol-1.

To get a similar accuracy, SAPT(DFT) induction energies
must be evaluated using the Sadlej/MC+ basis, that is, with
the inclusion of basis functions located at the positions of
the nuclei of the partner molecule.20 The Sadlej/MC+ and
aug-cc-pVTZ/MC+ bases give almost identical induction
energies. However, when used in the MC basis type, that is,
without the extra off-atomic functions, both the Sadlej and
aug-cc-pVTZ bases yield poor induction energies, the latter
being the better choice.

On the issue of damping: in our opinion, it is impossible
for the damping functions in current use to recover the
penetration energy. All that is possible is the damping out
of the short-range divergence in the multipole expansion.
Apart from special cases such as Monte Carlo simulations,
this is not essential for the dimer energy, as intersite distances
in a dimer are never small enough to see the onset of the
divergence in the multipole series. However, in the bulk,
many-body effects can cause small intersite distances,
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particularly in hydrogen-bonded geometries, and conse-
quently damping is needed. We have argued that comparisons
with nonexpanded energies are not useful in determining the
damping needed. Rather, we propose that the Tang-Toennies
functions26 be used with a damping coefficient ofâ ) x2IA

+ x2IB, whereIA and IB are the ionization energies (in au)
of the interacting molecules.

The remaining error will be entirely due to penetration
effects and the truncation error, the latter arising from the
truncation of the multipole (1/R) expansion. In accurate work,
these errors must be accounted for in some way. As they
decay exponentially with distance, like the exchange-
repulsion energy, they could be included with it and modeled
in a similar way. We are currently looking for a robust way
to do this.

Comparisons of the model induction energies and the
nonexpanded SAPT(DFT) energies brought to light a very
unexpected correspondence. Contrary to supposition, the
model induction energy at second order,Eind,d-class

(2) , does
not recover the expression for the second-order induction
energy in the polarization approximation,Eind,pol

(2) , but rather
the sum Eind,pol

(2) + Eind,exch
(2) . We have defined this sum to be

the induction energy,Eind,tot
(2) . The reason for this has to do

with spurious tunneling effects present due to Coulomb
singularities in the interaction operator.13,14These singularities
are also responsible for the slow convergence of the induction
energy with basis set and order in perturbation theory. It is
expected that a SAPT(DFT) formulation with a regularized
form of this operator will be free from both these problems.
Preliminary investigations suggest that this is indeed the case.

We have tried to describe ways of calculating the induction
energy with as few approximations as possible. However,
there will always be systems for which approximations will
be needed. Consequently, we have proposed and analyzed a
number of possible approximations of varying complexity.
The most useful of these approximations is one in which
we calculate the induction energy of a cluster from the
induction models only. We recommend using the damped
mixed-rank local polarizability description, that is, with a
rank 2 description on the heavy atoms and a rank 1
description on the hydrogen atoms. The success of this type
of model also explains why potentials that have used a similar
description of the induction energy have been so successful.
An example is the ASP water potential.32

VIII. Programs
Many of the theoretical methods described in this review
are implemented in programs available for download. Some
of these, together with their main uses in the present work,
are as follows:

(1) SAPT2002:42 SAPT(KS) energy calculations.
(2) CamCASP 4.5:15 Molecular properties in total and

distributed form and SAPT(DFT) dispersion and induction
energies. The CamCASP suite includes the GDMA 2.2
program34 used for calculating the distributed multipoles
needed in the induction energy calculations and the PFIT
program used to refine the distributed polarizabilities in the
WSMprocedure.

(3) ORIENT 4.6:16 Localization of the distributed polariz-
abilities and visualization of the energy maps.

(4) DALTON 2.0:43 DFT and CKS calculations. A patch42

is needed to enable DALTON 2.0 to work with SAPT2002
and CamCASP 4.5.
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Abstract: We have applied a many-body (MB) expansion, the electrostatically embedded many-

body (EE-MB) approximation, and the electrostatically embedded many-body expansion of the

correlation energy (EE-MB-CE), each at the two-body (MB ) PA, where PA denotes pairwise

additive) and three-body (MB ) 3B) levels, to calculate total energies for a series of low-lying

water hexamers using eight correlated levels of theory including second-order and fourth-order

Møller-Plesset perturbation theory (MP2 and MP4) and coupled cluster theory with single,

double, and quasipertubative triple excitations (CCSD(T)). Comparison of the expansion methods

to energies obtained from full (i.e., unexpanded) calculations shows that the EE-3B-CE method

is able to reproduce the full cluster energies to within 0.03 kcal/mol, on average. We have also

found that the deviations of the results predicted by the expansion methods from those obtained

with full calculations are nearly independent of the correlated level of theory used; this observation

will allow validation of the many-body methods on large clusters at less expensive levels of

theory (such as MP2) to be extrapolated to the CCSD(T) level of theory. Furthermore, we have

been able to rationalize the accuracies of the MB, EE-MB, and EE-MB-CE methods for the six

hexamers in terms of the specific many-body effects present in each cluster.

1. Introduction
The ability to calculate accurate energies for large systems
has long been a goal of the quantum chemical community.
Hartree-Fock theory, which neglects electron correlation,
is inadequate but is used to generate orbitals for methods
such as second-order Møller-Plesset perturbation theory,
MP2,1 coupled cluster theory with single and double excita-
tions, CCSD,2,3 or CCSD with quasiperturbative connected
triple excitations, CCSD(T),4 which do include electron
correlation and are able to accurately predict energies,
geometries, and frequencies for small to moderately sized
chemical systems. However, these post-Hartree-Fock meth-
ods have thus far proven to be too expensive, in their original
implementations, to be used for systems containing tens to
hundreds of atoms. As a result, there has been considerable

research aimed at trying to develop highly efficient
alogorithms,5-9 including parallelization schemes,10-18 to
make large systems tractable. However, because of the steep
scaling of computational effort with respect to system size
(CCSD(T), CCSD, and MP2 scale asN7, N6, and N5,
respectively, whereN is the number of atoms19), it is
impractical to utilize even these more efficient implementa-
tions for systems containing hundreds to thousands of atoms.

A promising area of research has focused on developing
variants of these methods that use localized molecular
orbitals15,20-23 or fragmentation.13,24-40 One can also consider
including a subset of interactions, for example Coulomb
interactions, to high order or in full, with other interactions,
e.g., those due to electron correlation energy considered only
to a lower order, e.g., only pairwise.41-43 In past work44,45

we have developed the electrostatically embedded many-
body method (EE-MB) and the electrostatically embedded* Corresponding author e-mail: truhlar@umn.edu.
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many-body expansion of the correlation energy (EE-MB-
CE) methods and have applied both methods to the study of
water clusters, ranging in size from 5 to 20 water molecules,
at the MP2 level of theory. MP2 was chosen because it is
the least expensive of the post-Hartree-Fock methods,
allowing for direct comparison of the EE-MB and EE-MB-
CE methods to the MP2 energies of the full cluster. In this
way we were able to examine the performance of the
expansion methods with respect to increasing system size,
which would not have been possible with other more
expensive post-Hartree-Fock methods like CCSD(T).

Despite the advantages of using MP2 for our initial studies,
there is a concern that other levels of electronic structure
theory could show different behavior. Because of theN6 or
N7 scaling of the post-MP2 methods with respect to system
size, if we wish to compare directly to full calculations (i.e.,
conventional calculations without a many-body expansion)
at a post-MP2 level with a reasonably large basis set
(polarized valence triple-ú or higher) we are limited to
relatively small systems (on the order of five heavy atoms).
Recent work by Olson et al.18 has provided CCSD(T), CCSD,
and MP2 energies for a series of five water hexamers using
both the aug-cc-pVTZ46,47 and s-cc-pVTZ basis sets (s-cc-
pVTZ denotes semidiffuse cc-pVTZ, and it uses the aug-
cc-pVTZ basis set on oxygen and the cc-pVTZ48 basis set
on hydrogen). These results constitute a set of highly accurate
energies against which to test our methods.

Water clusters in general exhibit large many-body effects,49

and it is well-known that different structural motifs can lead
to different many-body effects;50,51 therefore, these clusters
are an excellent choice for examining the behavior of many-
body methods. Along this line, Pedulla and Jordan51 have
examined the many-body effects of three isomers of the water
hexamer (cage, prism, and ring). Since there are a number
of isomers of the water hexamer that all lie within a few
kilocalories per mole of each other,18,52-58 this system serves
as a good test of the predictive capabilities of electronic
structure methods for water.

For any level of theory (e.g., MP2 or CCSD(T) with a
given basis) we can either perform full (i.e., conventional)
calculations of the potential energy,V, or many-body
expansions, with the latter defined by a truncated version of

whereVn is then-body term. Truncating atV2 is called the
pairwise additive (PA) approximation, and truncating atV3

is called the three-body (3B) approximation. For (H2O)N, V2

involves calculating (N(N - 1)/2) dimer calculations, and
V3 involves (N(N - 1)(N - 2)/3!) trimer calculations. If the
n-mer calculations are performed in vacuum, we have a
conventional many-body method (PA or 3B), and if they
are performed in a field of point charges at the nuclear
positions of theN - n missing monomers, we have the
electrostatically embedded many-body method (EE-PA or
EE-3B). If we perform a full (VN) calculation at the Hartree-
Fock (HF) level and expand the correlation energy (V -
VHF), we have the many-body expansion of the correlation
energy method (PA-CE or 3B-CE without point charges and
EE-PA-CE or EE-3B-CE with them). Further details of the

many-body methods have been discussed in previous work44,45

and are not discussed here.

2. Computational Details
The hexamers used in this work are defined by the MP2/
DH(d,p) geometries of Day et al.55 for the boat, book, cage,
ring (denoted as cyclic in that work), and prism isomers (see
Figure 1). All single-point calculations in this work use the
s-cc-pVTZ basis set (see section 1 for the definition of s-cc-
pVTZ). For each hexamer a total of nine levels of electronic
structure theory were considered: Hartree-Fock, MP2, MP3,
MP4D, MP4DQ, MP4SDQ, MP4, CCSD, and CCSD(T),
where MP3, MP4D, MP4DQ, MP4SDQ, and MP4 denote
various high-order perturbation theory approximations.59-62

The CCSD(T), CCSD, and MP2 single-point energies for
the hexamers were taken from the work of Olson et al.18 In
addition, MP4 calculations were run with theGaussian 0363

software program to determine the MP3, MP4D, MP4DQ,
MP4SDQ, and MP4 single-point energies for each hexamer.
PA, 3B, EE-PA, EE-3B, PA-CE, 3B-CE, EE-PA-CE, and
EE-3B-CE calculations were carried for each hexamer, at
each of the nine levels of theory, using theGaussian 03
software package.

For the sake of clarity a combination of many-body
method and electronic structure theory will be denoted by
the name of the many-body method with the level of
electronic structure level in parentheses. For example, EE-
PA-CE(MP2) will denote an EE-PA-CE calculation carried
out at the MP2 level of theory.

In the EE-MB and EE-MB-CE methods, charges of
-0.778 and 0.389 were used for the oxygen and hydrogen
atoms, respectively, as in refs 44 and 45.

3. Results and Discussion
3.1. Full Calculations.While the main goal of this paper is
analysis of the ability of the many-body methods to ac-
curately reproduce full energies obtained at the same level
of electronic structure theory (e.g., comparing a EE-PA-CE-
(MP2) calculation to a full MP2 calculation on the same
hexamer), it is useful to first examine the results of the full
calculations. Table 1 shows the relative energy differences
(relative to the prism structure) predicted by the full
calculations for each level of theory. All eight correlated

V ) V1 + V2 + V3 + ‚‚‚ (1)

Figure 1. MP2/DH(d,p) optimized hexamers of Day et al. for
the (a) boat, (b) book, (c) cage, (d) prism, and (e) ring
structures.
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levels of theory predict a relative energy ordering of prism
< cage < book < ring < boat. The energy differences
separating the isomers are all less than 3 kcal/mol, with the
smallest energy gap (cage minus prism) in the range between
0.02 and 0.20 kcal/mol.

An interesting result in Table 1 is how the perturbation
theory and CCSD results compare to the CCSD(T) results.
As was noted by Olson et al.18 the MP2 results differ from
the CCSD(T) results by 0.2-0.6 kcal/mol, with CCSD(T)
predicting systematically larger energy gaps than MP2. Past
work57,64,65comparing MP2 and CCSD(T) for small water
clusters showed that the differences obtained are small (on
the order of 0.05 kcal/mol for the water dimer and 0.1 kcal/
mol for the trimer), and, as a result, MP2 has become the
method of choice for many workers when studying water
clusters.51,56,65-68 The results in Table 1 indicate that the
exceptionally good agreement of MP2 and CCSD(T) for
small water clusters may begin to break down as larger
clusters are considered, and thus caution should be used when
applying MP2 to medium- to large-sized clusters. Another
interesting result is how well MP4 is able to reproduce the
CCSD(T) relative energies. Of the methods in Table 1, only
MP4 and CCSD(T) include connected triple excitations.
CCSD(T) includes not only the fourth-order connected triples
of MP4 but also a fifth-order connected triple excitation
operator involving singles amplitudes. The near equivalence
of MP4SDQ and CCSD in Table 1 shows that disconnected
triples (included in the latter but not the former) are
unimportant for water clusters, and the near agreement of
MP4 with CCSD(T) but not with MP4SDQ shows that for
water clusters the connected triples are important, but it is
adequate to include them at fourth order.

With five different structures there are a total of 10 energy
differences that one can compute (for example, the energy
difference between the boat and the book or between the
cage and the ring). In order to better characterize how
accurate the MPn (n ) 2-4) and CCSD results are, as
compared to CCSD(T), we have calculated the 10 energy
differences at each of the 9 levels of theory and computed
the mean unsigned and root mean squared errors relative to
the CCSD(T) results. The results of this analysis are shown
in Table 2. From this table it is clear that MP4 is very
accurate for these systems, as compared to CCSD(T); it has
a mean unsigned deviation of only 0.02 kcal/mol, and the

largest difference between the MP4 and CCSD(T) for any
of the 10 possible energy differences is 0.04 kcal/mol. This
conclusion is in good agreement with previous work by
Xantheas et al.69 on the water dimer. While MP2 has the
second-lowest mean unsigned error (0.31 kcal/mol), its
performance is considerably worse than that of MP4. The
remaining correlated methods have mean unsigned errors
ranging from 0.37 to 0.60 kcal/mol. Hartree-Fock does
particularly poorly, as is expected from the results in Table
1. While both MP4 and CCSD(T) formally scale asN7, the
use of CCSD(T) requires the completion of a CCSD
calculation (which has an iterativeN6 step4) before the
noniterative triples calculation. As a result, MP4 is less
expensive than CCSD(T) which may allow MP4 to be used
for benchmark calculations of water clusters that are too large
for CCSD(T). It seems worthwhile to note that although
CCSD(T) is well-known4 to be more accurate than MP4 in
general, where singles amplitudes may be large, this need
not be the case for particular interactions of noncovalent
interactions of closed-shell species.70 Even though the present
comparison involves larger clusters than those for which MPn
results (n ) 2, 3, 4) have previously (prior to ref 18) been
compared to CCSD(T) results, and hence involves compari-
sons that are assumed to be more relevant to the bulk water
case, there is no guarantee that MP4 is better than MP2 in
general (the series is often divergent, especially with basis
sets containing diffuse functions); and the good agreement
of MP4 with CCSD(T) for these small water clusters is not
guaranteed to hold for larger clusters. Therefore caution must
be exercised in choosing either MP2 or MP4 as an alternative
to CCSD(T) for water clusters. Further, systematic validation
studies would be useful.

3.2. Pairwise Additive Methods.In order to assess the
accuracy of the many-body methods we begin by evaluating
the average error in the electronic energy for each pairwise
additive method, at each level of electronic structure theory,
when compared to the full calculation (i.e., evaluating the
deviation between the EE-PA(MP2) and full MP2 energy
for each of the five hexamers). Table 3 shows the average
deviations between the pairwise additive methods (PA, PA-
CE, EE-PA, EE-PA-CE) and the full calculations at each of
the nine levels of theory. The first interesting observation is
that the errors for each pairwise additive method (PA or EE-
PA) are similar for all the correlated levels of theory as
indicated by the standard deviations being much smaller than
the average MUE. A comparison of the average mean

Table 1. Relativea Energies (kcal/mol) Predicted by Full
Calculations Using the s-cc-pVTZ Basis Setb

boat book cage prism ring

HF -1.79 -1.05 -0.27 0.00 -2.52
MP2 2.41 0.67 0.02 0.00 1.22
MP3 2.25 0.74 0.13 0.00 1.15
MP4D 2.33 0.76 0.14 0.00 1.21
MP4DQ 1.92 0.60 0.10 0.00 0.84
MP4SDQ 2.20 0.71 0.12 0.00 1.09
MP4 2.99 1.02 0.17 0.00 1.80
CCSD 2.23 0.74 0.14 0.00 1.12
CCSD(T) 2.99 1.06 0.20 0.00 1.81

a All energies are relative to the prism isomer b The s-cc-pVTZ
basis set denotes the aug-cc-pVTZ basis set on oxygen and the cc-
pVTZ basis set on hydrogen.

Table 2. Average Deviations between Various Full
Calculated Energies and Full CCSD(T)a

MUE RMSE

HF 2.68 3.08
MP2 0.31 0.36
MP3 0.41 0.47
MP4D 0.37 0.43
MP4DQ 0.60 0.69
MP4SDQ 0.44 0.51
MP4 0.02 0.03
CCSD 0.43 0.49

a These results are averaged over the ten energy differences that
can be obtained from the five structures in Table 1.
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unsigned errors shows that the PA method has a large error
of 11.78 kcal/mol. The average binding energy of the six
structures at the CCSD(T) level is 46.72 kcal/mol (taken from
ref 18), so an average error of 11.78 kcal/mol corresponds
to a percent error of approximately 25% (the next largest
percent error is 2.2% for the EE-PA method). The EE-PA
method shows an order-of-magnitude improvement over the
PA method, and the PA-CE and EE-PA-CE methods have
errors that are 2 orders of magnitude better.

Furthermore, one can see that for the PA and EE-PA
methods the mean unsigned error for the Hartree-Fock level
of theory is as large or larger than the errors for the correlated
methods (by definition the Hartree-Fock errors for the PA-
CE and EE-PA-CE methods are zero because they include
a full Hartree-Fock calculation). The fact that the errors in
the PA-CE and EE-PA-CE methods are much smaller than
errors in the PA and EE-PA methods indicates that the largest
breakdown in the many-body and electrostatically embedded
many-body expansions are in the Hartree-Fock energy and
that even a pairwise treatment of the correlation energy is
sufficient to reproduce the correlation energy at a given level
to within 0.2 kcal/mol. Given that even the CCSD(T) level
of theory is believed to be accurate only to within∼1 kcal/
mol the difference between the pairwise methods at a given

level of electronic structure theory (with the exception of
the standard pairwise additive approximation) and the
conventional calculation (i.e., a calculation on the full cluster
at the same level of theory) is expected to be of the same
magnitude or smaller than the difference between the
conventional calculation and the result from a full config-
uration interaction calculation.

3.3. Three-Body Methods.We continue our analysis by
comparing the electronic energies predicted by the three-
body method, at each level of electronic structure theory, to
the full calculation for each of the five hexamers. Table 4
shows the average errors between the three-body methods
(3B, 3B-CE, EE-3B, EE-3B-CE) and the full calculations at
each level of theory. As expected,45 we see that the 3B
calculations are approximately an order of magnitude better
than the PA results (compare Table 4 to Table 3). Also, we
see that including the full Hartree-Fock energy reduces the
errors by approximately an order of magnitude as one goes
from the 3B to the 3B-CE method and from the EE-3B to
the EE-3B-CE method. We again see that all of the correlated
methods have very similar errors for each of the many-body
methods and that the standard deviations are even lower for

Table 3. Average Deviationsa (kcal/mol) between Pairwise Additive Energies and Full Calculations at the Same Level of
Theory

PA PA-CE EE-PA EE-PA-CE

MSD MUD RMSD MSD MUD RMSD MSD MUD RMSD MSD MUD RMSD

HF 11.81 11.81 11.94 0.00 0.00 0.00 1.13 1.13 1.15 0.00 0.00 0.00
MP2 11.89 11.89 12.01 0.03 0.09 0.10 1.10 1.10 1.11 -0.04 0.04 0.04
MP3 11.75 11.75 11.89 0.01 0.11 0.13 0.96 0.96 1.01 -0.17 0.17 0.22
MP4D 11.75 11.75 11.89 0.01 0.10 0.13 0.96 0.96 1.00 -0.17 0.17 0.22
MP4DQ 11.70 11.70 11.83 -0.03 0.12 0.14 0.95 0.95 0.98 -0.19 0.19 0.21
MP4SDQ 11.72 11.72 11.86 -0.02 0.10 0.12 0.98 0.98 1.02 -0.15 0.15 0.18
MP4 11.80 11.80 11.93 0.03 0.08 0.09 1.02 1.02 1.06 -0.11 0.11 0.15
CCSD 11.74 11.74 11.88 -0.01 0.09 0.11 0.99 0.99 1.02 -0.14 0.14 0.18
CCSD(T) 11.82 11.82 11.96 0.05 0.09 0.10 1.03 1.03 1.07 -0.11 0.12 0.16
av MUEb 11.77 0.10 1.00 0.14
SDc 0.06 0.01 0.05 0.05

a MSD, MUD, and RMSD denote mean signed, mean unsigned, and root-mean-squared deviations, respectively, in V as compared to the full
calculations. Thus a positive MSE corresponds to underestimating the strength of binding, and a negative MSE corresponds to overestimating
the strength of binding. b Average of the MUE for the correlated methods (the rows from MP2 to CCSD(T)). c Standard deviation of MUE for the
correlated methods (the rows from MP2 to CCSD(T)).

Table 4. Average Deviationsa (kcal/mol) between Three-Body (3B) Methods and Full Calculations at the Same Level of
Theory

3B 3B-CE EE-3B EE-3B-CE

MSD MUD RMSD MSD MUD RMSD MSD MUD RMSD MSD MUD RMSD

HF 1.08 1.08 1.22 0.00 0.00 0.00 0.08 0.09 0.11 0.00 0.00 0.00
MP2 1.25 1.25 1.42 0.17 0.17 0.20 0.09 0.12 0.15 0.01 0.03 0.04
MP3 1.21 1.21 1.37 0.12 0.12 0.15 0.08 0.11 0.14 0.00 0.03 0.03
MP4D 1.23 1.23 1.39 0.15 0.15 0.17 0.09 0.11 0.14 0.01 0.03 0.03
MP4DQ 1.21 1.21 1.37 0.13 0.13 0.15 0.08 0.11 0.13 0.00 0.03 0.03
MP4SDQ 1.23 1.23 1.39 0.15 0.15 0.17 0.08 0.11 0.14 0.00 0.03 0.04
MP4 1.28 1.28 1.45 0.20 0.20 0.23 0.09 0.13 0.16 0.01 0.04 0.05
CCSD 1.22 1.22 1.39 0.14 0.14 0.17 0.08 0.11 0.14 0.00 0.03 0.04
CCSD(T) 1.27 1.27 1.44 0.19 0.19 0.22 0.09 0.13 0.16 0.01 0.05 0.05
av MUEb 1.24 0.16 0.12 0.03
SDc 0.03 0.03 0.01 0.01

a MSD, MUD, and RMSD denote mean signed, mean unsigned, and root-mean-squared deviations, respectively, as compared to full
calculations. See footnote a of Table 3 for an explanation of the signs. b Average of the MUE for the correlated methods (the rows MP2 to
CCSD(T)). c Standard deviation of the correlated methods (the rows MP2 to CCSD(T)).
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the three-body methods than at the pairwise additive
level. The 3B-CE errors are smaller than the 3B ones, and
the EE-3B-CE errors are smaller than the EE-3B errors,
indicating again that the dominant errors associated with the
3B and EE-3B methods are due to the Hartree-Fock energy
and not the correlation energy. As seen with the pair-
wise additive methods, the errors associated with the three-
body methods (with the possible exception of the conven-
tional three-body method, 3B) are smaller than the intrinsic
errors of the levels of electronic structure theory that are
tested.

3.4. Analysis of the Many-Body Methods.Based on the
results in Tables 3 and 4, the many-body methods can be
ranked in order of decreasing mean unsigned error as PA.
3B > EE-PA . 3B-CE > EE-PA-CE> EE-3B > PA-CE
. EE-3B-CE; however, Tables 3 and 4 deal only with
average over errors. In order to truly understand the sources
of the errors in the many-body methods, it is useful to also
look at the individual error for each hexamer. Because all
the correlated electronic structure methods in Table 2 show
very similar results for each many-body method, only one
level of electronic structure theory need be discussed in this
respect. We will discuss the analysis of the CCSD(T) case,
for which the key results are given in Table 5. The first set
of results shown in Table 5 is the error in absolute energy
for each hexamer, calculated with each many-body method,
compared to the full CCSD(T) calculation (for example, the
error between the energy of the cage isomer calculated at
the PA(CCSD(T)) level of theory and the energy of the cage
isomer calculated using a full CCSD(T) calculation). As
mentioned in section 3.1, with 5 hexamers there are 10 total
energy differences that one can compute (for example, the
energy difference between the boat and the book or between
the cage and the ring). We have calculated these 10 energy
differences for each many-body method listed in Table 5
and compared them to the results from the full CCSD(T)
calculations; the resulting mean unsigned error can be found
in the last column of Table 5. The pupose of this analysis is
not to assess the accuracy of the many-body methods (which
has been done in the two previous sections) but to see if we
can gain any insight into the performance of the many-body
methods with respect to the many-body terms present in the
structures.

Table 5 shows that the mean unsigned errors for the PA-
CE, 3B-CE, EE-3B, and EE-PA-CE methods all lie within
0.04 kcal/mol of each othersas was stated in our previous
discussions of Tables 2 and 3swhich make them all
appropriate for use on systems that require high accuracy;
however, if the errors for individual structures are compared,
the four methods behave quite differently. For example, the
EE-PA-CE method has smaller errors for the boat, book, and
ring structure than for for the cage and prism, whereas the
EE-3B method has smaller errors for the book, cage, and
prism than for the boat and ring structures.

Because each method in Table 5 uses a different ap-
proximation to calculate the many-body effects in these
clusters (i.e., neglecting some terms or including them in an
average way via the point charges) it is reasonable to assume
that their performance for the hexamers is directly related
to the many-body effects present in the hexamers. Therefore,
in order to better understand any systematic shortcomings
of each many-body method we must first have a good
understanding of the many-body effects in each structure.

3.4.1. General Discussion of Many-Body Effects.Before
we begin this analysis we will take a moment to clarify a
few terms necessary in our discussion. First of all, when we
refer to smaller errors, we mean smaller absolute values of
errors. Second, within a many-body expansion the total
energy of the system is written as a sum ofn-body terms
denoted byVn (see eq 1 in the Introduction) in which the
one-body (V1), two-body (V2), and three-body (V3) terms can
be written as

respectively, and so on for higher-order terms, and where
Ei, Eij, andEijk, ..., are the energies of the monomers, dimers,
trimers, and so forth, in the system.

Because the electronic energies of all the monomers in
the system are negative, each term of the series in eq 2 is
negative, and, therefore,V1 must be negative. For the series
in eqs 3 and 4, however, each term may be positive or
negative. For example, if the energy of dimerEij is higher
in energy than the sum of its constituent monomer energies
(i.e., an unfavorable interaction) the corresponding term in
the series will be positive.

Throughout this analysis if we are talking about the series
in eqs 2, 3, or 4 we will refer to them as the one-body, two-
body, or three-body terms. If we are talking about the
individual terms making up these series we will refer to them
as an individual one-body, individual two-body, or individual
three-body terms. We will also use the phrase “beyond-three-
body terms” to denote the sum of the four-, five-, and six-
body terms.

Table 5. Signed Errors (kcal/mol) for the Many-Body
Methods for the Five Hexamer Structures Relative to the
Full CCSD(T) Calculation

boat book cage prism ring MUEb

PAa 13.67 11.71 9.93 9.74 14.06 2.47
3B 1.99 1.14 0.52 0.59 2.11 0.92
PA-CE -0.01 0.13 -0.10 0.13 0.09 0.14
3B-CE 0.30 0.19 0.06 0.06 0.32 0.15
EE-PA 1.25 1.06 0.78 0.65 1.40 0.39
EE-3B 0.21 0.08 -0.01 -0.09 0.25 0.18
EE-PA-CE -0.01 -0.05 -0.23 -0.28 0.04 0.17
EE-3B-CE 0.05 0.02 -0.02 -0.06 0.07 0.07

a In this table, PA denotes PA(CCSD(T)), EE-PA denotes EE-
PA(CCSD(T)), etc. b MUE denotes mean unsigned error of the ten
comparisons of the relative energies for two structures; see section
3 of the text for an explanation.

V1 ) ∑
i

Ei (2)

V2 ) ∑
i<j

(Eij - Ei - Ej) (3)

V3 ) ∑
i<j<k

[(Eijk - Ei - Ej - Ek) - (Eij - Ei - Ej) -

(Eik - Ei - Ek) - (Ejk - Ej - Ek)] (4)
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3.4.2. Many-Body Effects in Water Hexamers.To analyze
the many-body effects of each hexamer we will build on
the insights of Pedulla and Jordan51 who have carried out a
many-body analysis using the MP2 level of theory with the
aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ basis sets
for the cage, ring, and prism isomers (optimized at the MP2/
6-31+G(2d,p) level of theory). The relevant conclusions of
ref 51 are as follows: (i) the cage and prism have larger
two-body terms than the ring due to the presence of more
hydrogen bonds, (ii) the ring isomer has larger three- and
four-body terms because all of the individual two- and three-
body terms have the same sign, (iii) five- and six-body terms
aree0.05 kcal/mol for the cage and prism structure but are
as large as 0.20 kcal/mol for the ring, and (iv) the effects of
electron correlation are relatively unimportant for many-body
terms beyond third order.

Table 6 shows the two-, three-, and beyond-three-body
terms, at the CCSD(T)/s-cc-pVTZ level of theory, for each
hexamer considered in this work. Following the work of
Pedulla and Jordan we have also computed the contribution
of the correlation energy to the two-, three-, and beyond-
three-body terms; these results are shown in Table 7. Tables
6 and 7 show that the results obtained for our clusters at the
CCSD(T)/s-cc-pVTZ level of theory are consistent with the
work of Pedulla and Jordan at the MP2/aug-cc-pVTZ level
of theory. We see that the three-body and beyond-three-body
terms are approximately four times larger for the ring and
the boat structure than for the cage and the prism and that
the book structure is intermediate between these two groups.
We also see that the contribution of the correlation energy
to the three-body and beyond-three-body terms is ap-
proximately 2 orders of magnitude smaller than its contribu-
tion to the two-body terms, and finally we see that the
magnitudes of the three-body and beyond-three-body terms
are very similar.

3.4.3. Analysis of the Nonelectrostatically Embedded
Methods.Table 6 shows that the terms beyond the two-body
terms are smallest for the prism and cage structure and largest
for the boat and ring structure. Therefore, the PA method

(which neglects all three-body and higher terms) will perform
the best for the prism and the worst for the ring, which is
confirmed by Table 5. At the 3B level of theory the errors
are significantly reduced compared to the PA method
(because only four-body and higher terms are neglected),
but the results are still best for structures with small four-,
five-, and six-body effects (i.e., prism and cage) and worst
for structures with larger many-body effects (i.e., ring); this
agrees with the results in Table 5.

At the PA-CE level,V1 - V6 are accounted for at the
Hartree-Fock level, but correlation effects are considered
only for the one- and two-body terms. The work of Pedulla
and Jordan and the results of Table 7 show that inclusion of
correlation energy has only a relatively small effect on
beyond-three-body terms. As a result Table 5 shows that the
PA-CE errors are much lower (nearly 2 orders of magnitude
lower) than the PA errors (due to inclusion ofV3 - V6 at
the Hartree-Fock level). Table 5 also shows that the PA-
CE method performs better than the 3B method (due to
inclusion of V4 - V6 at the Hartree-Fock level). Finally,
for the 3B-CE method one would expect improved perfor-
mance over the three previously discussed methods, because
only the four-, five-, and six-body correlation terms are
neglected; however, the errors for the boat and ring are
substantially larger at the 3B-CE level than at the PA-CE
level; however, this can be explained by examining the
contributions of correlation energy to the three-body and
beyond-three-body terms. Table 7 shows that if only cor-
relation effects are considered, the magnitude of the three-
body and beyond-three-body terms are similar, but that they
have different signs. Because these terms are nearly equal
and opposite when both are neglected (i.e., in the PA-CE
method) the errors cancel each other, and the overall error
is lower than may have been expected; however, when only
the latter is neglected (i.e., in the 3B-CE method) there is
no such cancellation and the errors increase, particularly for
structures like the ring and boat.

3.4.4. Analysis of the Electrostatically Embedded Methods.
In the EE-PA approximation all two-body terms are taken
into account explicitly, and the beyond-pairwise terms are
accounted for in an average way by the presence of the point
charges. As a result, Table 5 shows that the overall errors
are substantially (approximately 1 order of magnitude)
smaller than for the PA method. As a further consequence,
the EE-PA method performs best for the prism and cage
(which have smaller three-body and beyond-three-body
terms). Table 5 also shows that the EE-PA method has lower
errors than the 3B method for the ring, boat, and book
structures and slightly higher errors for the cage and prism
structure. These results are most likely due to not explicitly
accounting for the three-body correlation terms discussed at
the end of the previous section. The EE-3B method explicitly
includes the three-body correlation terms, and, as a result,
the errors are reduced by nearly an order of magnitude
compared to the EE-PA method.

Table 5 also shows that EE-PA-CE method, by including
the full Hartree-Fock energy, has smaller errors than the
EE-PA method; this result is expected based on the non-EE
results. The non-EE results also suggest that the largest errors

Table 6. Two-, Three-, and Beyond-Three-Body Terms
(kcal/mol) at the CCSD(T) Level of Theory

V2 V3 beyond V3
a

boat -31.99 -11.68 -1.99
book -36.07 -10.57 -1.14
cage -38.62 -9.41 -0.52
prism -39.06 -9.16 -0.59
ring -32.82 -11.95 -2.11

a Beyond V3 denotes the sum of four-, five-, and six-body terms.

Table 7. Contribution of the Correlation Energy to the
Two-, Three-, and Beyond-Three-Body Terms (kcal/mol) at
the CCSD(T) Level of Theory

V2 V3 beyond V3
a

boat -11.87 0.25 -0.30
book -14.24 0.06 -0.19
cage -16.15 0.16 -0.06
prism -16.43 0.19 -0.06
ring -12.08 0.24 -0.32

a Beyond V3 denotes the sum of four-, five-, and six-body terms.
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should be for the cage and prism (due to not explicitly
including the three-body correlation energy), which is
consistent with the results in Table 5. Table 5 also shows
that the EE-PA-CE errors for the ring, boat, and book
structures are lower than the EE-3B errors, while the opposite
is true for the cage and prism. This result can be rationalized
by considering the largest error in each method, in particular
failing to include the full Hartree-Fock energy in the EE-
3B method and not explicitly accounting for the three-body
correlation terms in the EE-PA-CE method. The EE-MB-
(HF) errors for the boat, book, cage, prism, and ring are 0.16,
0.06, 0.01,-0.02, and 0.18 kcal/mol, whereas the errors
associated with not explicitly accounting for the electrostati-
cally embedded three-body correlation energy are-0.06,
-0.07, -0.21, -0.21, and-0.03 kcal/mol. The dominant
errors for the two methods have quite different effects on
the different structures. Based on this observation one might
have predicted that if an EE-3B expansion of the Hartree-
Fock energy were used with an EE-PA expansion of the
correlation energy that the errors for the book, boat, cage,
prism, and ring would be 0.10,-0.01,-0.19,-0.24, and
0.15 kcal/mol, respectively (assuming the errors are purely
additive); the actual errors obtained are 0.15, 0.01,-0.21,
-0.30, and 0.22 kcal/mol.

In the EE-3B-CE method,V1 - V6 are accounted for
explicitly in the Hartree-Fock energy, the contribution to
the two- and three-body terms from the correlation energy
is explicitly taken into account, and the contribution of
correlation energy to the higher-order terms is included in
an average way. As a result, the EE-3B-CE method has the
lowest errors; in particular, Table 5 shows that the error at
the EE-3B-CE level has a magnitude of 0.07 kcal/mol or
less for all five of the hexamers.

3.5. Timings. In order to evaluate the usefulness of the
EE-MB and EE-MB-CE expansions, we must consider not
only their accuracies but also their costs relative to competi-
tive, or potentially competitive, methods. Therefore, we have
computed the average times needed, on a single processor,
to calculate the hexamer energies at the MP4/s-cc-pVTZ
levels of theory and also for the eight many-body methods
at the CCSD(T)/s-cc-pVTZ level of theory and have ex-
pressed these timings relative to the time needed to calculate
the same energies at the MP2/s-cc-pVTZ level of theory with
the same computer program and on the same computer (note
that even ratios of timings depend on the computer program
and computer). These timings are given in Table 8. First,
the table shows that all eight many-body methods at the
CCSD(T) level of theory are less expensive than an MP4

calculation on the full system. As the system size increases
the many-body methods will become increasingly cost-
effective relative to full MP4 calculations. Second, inclusion
of the point charges does not change the amount of time
needed to carry out the many-body expansion. Third,
inclusion of the full Hartree-Fock energy causes a negligible
increase in cost for these small systems.

Perhaps most importantly is that the pairwise methods are
only five times more expensive than an MP2 calculation.
This is important because both the PA-CE(CCSD(T)) and
EE-PA-CE(CCSD(T)) methods perform better than MP2
when compared to the full CCSD(T) calculations. While the
three-body methods are approximately 100 times more
expensive than full MP2 calculations, all of the monomer,
dimer, and trimer calculations are independent of each other
which allows them each to be run on a different processor.
As a result, the many-body methods are all highly parallel-
izable and so for moderately sized systems (on the order of
10 monomers) can be run in under a day, even at the CCSD-
(T) level of theory.

4. Conclusions
Many-body (MB), electrostatically embedded many-body
(EE-MB), and electrostatically embedded many-body expan-
sion of the correlation energy (EE-MB-CE) calculations were
carried out on five low-lying water hexamers and compared
to full calculations at eight correlated levels of electronic
structure theory ranging from MP2 theory to CCSD(T). We
found that the average absolute errors associated with the
many-body methods are consistent over the correlated levels
of theory tested. Furthermore, when the errors obtained with
each many-body method for each structure are compared they
are also consistent across all levels of theory.

The mean unsigned errors in the relative energies of the
structures are 0.17 and 0.07 kcal/mol, respectively, for EE-
PA-CE and EE-3B-CE calculations, as compared to mean
unsigned errors of 2.47 and 0.92 kcal/mol for conventional
PA and 3B calculations, although the EE improvement adds
negligibly to the computational cost, and the CE improve-
ment requires only adding a Hartree-Fock calculation of
the full system (which, for small- or moderate-sized systems
is negligible or small, respectively). Finally, if one compares
the accuracy of the many-body methods for reproducing the
CCSD(T) relative (between structures) energy differences
to the accuracy of full MP2 calculations (where “full” denotes
without a many-body expansion, and where we note that full
MP2 is commonly used in the literature for water clusters),
we find that carrying out EE-MB, MB-CE, and EE-MB-CE
calculations at the CCSD(T) level gives far better results,
despite the method being competitive in speed if the many-
body methods are run in parallel. We have also found that
MP2 appears to be somewhat anomalous in that it is the only
method that has a lower mean unsigned error for the EE-
PA-CE method than for the EE-3B-CE method, which is
probably just an accident.

In addition, we have been able to rationalize the perfor-
mance of the EE-MB and EE-MB-CE methods on the
various isomers in terms of the many-body effects of the
clusters themselves. This will allow us to use the most cost-

Table 8. Timingsa for MP4 and Many-Body Methods at
the CCSD(T) Level of Theory, Relative to MP2 with the
Same s-cc-pVTZ Basis Setb

timing

MP4 178
PA or EE-PA 5.0
3B or EE-3B 110
PA-CE or EE-PA-CE 5.4
3B-CE or EE-3B-CE 111

a All calculations use the s-cc-pVTZ basis set. b In this table, PA
denotes PA(CCSD(T)), EE-PA denotes EE-PA(CCSD(T)), etc.
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effective method possible for future studies and can provide
insight into the performance of these methods on other
systems.
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Abstract: We have characterized the degeneracy space (DS) between the ground (S0) state

and the first excited (S1) state along the exocyclic methylene twist motion of fulvene, using our

calculation strategy, i.e., a two-step procedure with CASSCF. The origin of the “cancellation

error” on locating degeneracy points under geometrical constraints is analyzed, leading to a

method to assess adequacy of the strategy. According to our estimation, these S1/S0 DPs are

optimized for energy within 2.0 × 10-3 Eh Å-1 (the value of root-mean-square). From the obtained

S1/S0 DS, we provide some information about the exocyclic methylene rotation by 180o.

1. Introduction
Recent theoretical calculations elucidated the importance of
the conical intersections which are the real state crossing
between the same spin multiplicity states.1,2 A degeneracy
point (DP), which is an apex of a conical intersection, is not
an isolated point but consecutive space (see the next section
about the details). The method to locate stationary DP (e.g.,
the lowest energy degeneracy point: LEDP) has been already
established.3,4 However, some theoretical calculations indi-
cated the importance of exploring the degeneracy space
(DS).5-7 Hence, the method to explore the DS as a function
of an arbitrary internal coordinate of the molecule is desired.
Some methods characterizing the DS along an arbitrary
internal coordinate of molecules have been reported. In the
method based on Lagrange multipliers for optimization in
the DS,3 the determination of the section of the DS along a
variable is possible.8 In the projected gradient method,4 when
one uses the method with a geometric constrain beyond
symmetry, the point at which energies are not degenerated
is located. This undesirable result is called a “cancellation
error’’ which has been discussed, and some methods to
circumvent the problem have been proposed.7,9-12 According
to these discussions, the origin of cancellation error is due
to the loss of the orthogonality between a degeneracy lifting
space and its complement space. We will however show that
it is not the case.

We have circumvented the cancellation error by a two-
step procedure.9,10,13 We however did not assess how well
energy was minimized with the two-step procedure. The goal
of this paper is to clarify how well energy is minimized using
the procedure and what condition is required for the
procedure. To this end, we selected fulvene as a calculation
target.

Fulvene is known as one of the isomers of benzene and a
product of its photoisomerization.14-17 The radiationless
decay from the first excited (S1) state in fulvene is
observed.18-21 Theoretically, this radiationless decay can be
explained by the existence of some DPs.12,22-24 These
theoretical results suggested the possibility of the exocyclic
methylene rotation by 180o. On the other hand, cis-trans
photoisomerization is experimentally observed in the fulvene
derivative. The photoisomerization ofE-Z-2-tert-butyl-9-
(2,2,2-triphenylthylidene)fluorene is recently observed ex-
perimentally.25 This means that fulvene is useful as photo-
switches if suitable substitutions are selected. To select the
suitable substitutions, it is necessary to know the condition
that makes it possible for the exocyclic methylene to rotate
by 180o. Bearpark et al. suggested that the 0-0 excitation
to S1 is needed for the rotation.22 In this paper, considering
the existence of theS1/S0 DPs, we additionally discuss the
condition of the exocyclic methylene rotation by 180o.
Bearpark et al.12 have already revealed that threeS1/S0 DPs
(DPplanar: C2V planar structure, DP63: exocyclic methylene
is rotated by about 63o with C2, and DPperp: exocyclic* Corresponding author e-mail: kazuya@chem.tsukuba.ac.jp.
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methylene is perpendicular to a five-membered ring withC2V)
exist in the sameS1/S0 DS which is predicted to be chemically
relevant to cis-trans photoisomerization in contradiction to
the suggestion by Deeb et al.26 However, we have some
questions about the previous mappingS1/S0 DS.12 Here we
will give more reliable results in the geometry with better
energy degeneracy.

In section 2, we analyze the origin of the “cancellation
error’’ and suggest the method to assess the validity upon
using our computational strategy.9,10,13In section 4, picking
up the exocyclic methylene rotation of fulvene, we will show
the valid condition in applying the two-step procedure based
on section 2. Utilizing the procedure, the possibility of the
methylene rotation in a fulvene molecule by 180o is
discussed.

2. Theoretical Discussion
To describe the conical intersection, an apex of which is a
DP, two coordinates are needed.1,27 One is a gradient
difference vector (GD)

and the other is a derivative coupling vector (DC)

In eqs 1 and 2, the gradient∇ is a vector operator in nuclear
coordinates.Ψ1 andΨ0 are wave functions of the upper and
lower states, respectively. Their energies are denoted asE1

andE0. The pair (g, h) is usually called a branching plane
or a g-h plane.1,27 In the complement orthogonal space to
the branching plane, the degeneracy is preserved. In this
paper, we refer to this complement space as a degeneracy
space (DS) which is sometimes called a conical intersection
hyperline or seam.1,27 The DS is (n - 2)-dimensional space
for two states, wheren is the number of molecular internal
degrees of freedom. We denote unit vectors,x1 andx2

on the branching plane and (n - 2)-dimension internal
coordinates orthogonal to the branching plane asx3, x4, ...,
xn. xi (i ) 3, 4...n) is referred to as intersection adapted
coordinates.27 Intersection adapted coordinates are different
from nonredundant internal coordinates because each of the
xi (i ) 1, 2...n) is represented as a linear combination of
some variables like bond lengths, bond angles, and/or
dihedral angles. To locate the lowest energy degeneracy point
(LEDP) in DS, some optimization methods have been
developed.3,4,28The projected gradient method4 is extensively
used. If this method is used together with a geometric
constraint beyond molecular symmetry, however, a point at
which the energy of two states are not degenerated is finally
reached. We have pointed out that this error is due to
constraining the variables that have components in the
branching plane.9 In the following discussion, we show that
the error is due to constraining the variables that have
components in both the branching plane and the intersection
adapted coordinates.

In the projected gradient method, the following gradient
is used

where P is the projection operator onto the (n - 2)-
dimensional intersection adapted coordinates. That is to say,
P deducts DC and GD from∇E1. Here, we write the GD in
a non-normalized form for simplicity although the GD in
eq 4 is practically coded in a normalized form,x1.

Hereafter, we regardE1 as a function of internal molecular
coordinates,Vi (i ) 1, 2, ...,n), and defineei as a unit vector
in the direction of the displacement ofVi. ei must be
orthogonal to each other. For instance,ei can be obtained
by orthogonalizing the unit vector of a physically significant
set like bond lengths, bond angles, and dihedral angles.29

Then,∇E1 can be represented by derivatives with respect to
Vi (i ) 1, 2, ...,n).

For convenience, we classify the components of∇E1 into
four groups.

where WL is the group of the components which has no
overlap with the branching plane. BothWM and WS are the
groups of the components having overlap with the branching
plane, butWS is the variable that is constrained. On the other
hand,WP is the group of the components that lie within the
branching plane. Corresponding unit vectors are denoted by
eL, eM, eS, andeP and distinguished by an additional subscript.
After applyingP, eq 6 becomes

where coefficients,cM,i andcS,j, satisfy

The branching plane component should be represented by
the deducted component. Then we write the component of
the second term in eq 4 as

g ) ∇(E1 - E0) (1)

h ) 〈Ψ1|∇Ψ0〉 (2)

x1 ) g
|g|, x2 ) h

|h| (3)

gCIO ) P∇E1 + 2(E1 - E0)∇(E1 - E0) (4)
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∂E1
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eS,j (7)

cM,i ) 1 - x1 ‚ eM,i - 1 - x2 ‚ eM,i

) 1 - c′M,i (8a)

cS,j ) 1 - x1 ‚ eS,j - 1 - x2 ‚ eS,j

) 1 - c′S,j (8b)

S1/S0 Degeneracy Space of Fulvene J. Chem. Theory Comput., Vol. 4, No. 1, 200843



Equation 4 then becomes

Although the third summation term is eliminated for
geometric constraint, we keep this term for clear discussion.
The following condition is also implicitly imposed because
of the orthogonality between the intersection adapted coor-
dinates and branching plane:

According to eq 10, the convergence condition then reads

Here,CS,j is finite. Equation 12(a) shows that optimization
will be successful if the variables that have no overlap with
the branching plane are employed. As for eq 12(d), two
situations are possible. One isE1 - E0 ) 0 and the other is
∂E1/∂VP,k ) 0. The former condition is, however, ruled out
by the following reason: Multiplying eq 12(b) bycM,i(∂E1/
∂VM,i) and using eq 11

is obtained. Apart from special cases (e.g., the value ofVS,j

corresponds to that of a LEDP),cS,jc′S,j(∂E1/∂VS,j)2 is not zero
from eq 12c. The right-hand side of eq 13 is not zero,
accordingly. Namely, the optimization converges to the point
where two states do not degenerate (i.e.,E1 * E0). This is
really a “cancellation error”. If eithercS,j or c′S,j is zero, then

the cancellation error does not occur because there are no
dependences between∂E1/∂VM,i and∂E1/∂VS,j by eq 11. If both
cS,j andc′S,j are not zero, then the cancellation error occurs.
Therefore, in contradiction to the previous suggestion (the
orthogonality between the first and second term in eq 4 is
lost due to the constraint), to keep the orthogonal condition
[eq 11], the first term offsets the second term in eq 4.

Recently, this cancellation error has been circumvented
by several methods.7,9-12 Migani et al.7 circumvented it by
scaling the second term in eq 4 with a factor of 100.
Yamazaki et al.11 circumvented it by orthogonalizing the
internal coordinates of molecules. With the gradient of which
the constraint is applied before the projection of∇E1 onto
the intersection adapted coordinates, Bearpark et al.12 have
succeeded to map theS1/S0 DS along the exocyclic methylene
rotation of fulvene with a maximum energy gap of 0.4 kcal
mol-1. It is, however, noteworthy that the points at which a
maximum energy gap is approximately 0.4 kcal mol-1 (see
Table 1) can be located by using the default gradient (our
first step). That is, there is no difference in effect between
the default gradient4 and the modified gradient.12

On the other hand, in our easy computational strategy, after
optimization using eq 4 (i.e., converging to the geometry
satisfying eq 12), we carried out the geometry optimization
using only the second term in eq 4.9,10,13We have used this
computational strategy without estimating how well energy
is minimized within the intersection adapted coordinates.
Here we try to assess the validity of the strategy. Multiplying
eq 12b bycM,j(∂E1/∂VM,i) and using eq 11, we obtain

Table 1. Values of the Difference (E1 - E0) (in Eh) and
the Gradient, Eq 4 to θ, and
0.5x2(E1 - E0)|CS,θ| (in Eh Å-1) along θ in the First Stepa

θ (deg) (E1 - E0) CS,θ 0.5x2(E1 - E0)|CS,θ| RMS

0 0.00000 0.00000 0.00000 0.00000
5 0.00002 -0.01530 0.00005 0.00030

10 0.00008 -0.00890 0.00005 0.00058
15 0.00016 -0.01294 0.00012 0.00085
20 0.00028 -0.01647 0.00019 0.00108
25 0.00041 -0.01928 0.00028 0.00127
30 0.00053 -0.02115 0.00035 0.00140
35 0.00064 -0.02185 0.00039 0.00145
40 0.00070 -0.02119 0.00040 0.00141
45 0.00070 -0.01902 0.00036 0.00127
50 0.00061 -0.01530 0.00027 0.00102
55 0.00042 -0.01018 0.00015 0.00068
60 0.00017 -0.00405 0.00004 0.00027
63.1 0.00000 0.00000 0.00000 0.00000
65 0.00010 0.00235 0.00002 0.00016
70 0.00031 0.00791 0.00010 0.00053
75 0.00038 0.01125 0.00016 0.00074
80 0.00028 0.01103 0.00013 0.00072
85 0.00009 0.00686 0.00005 0.00044
90 0.00000 0.00000 0.00000 0.00000

a The RMS values of the projected gradient which is obtained after
the second step is also listed.
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This equation indicates the variables which have overlap with
both the branching plane and the intersection adapted
coordinates cannot work as an independent variable for
optimization due to geometric constraint. In turn, the second
step optimization is successfully limited in effect within the
intersection adapted coordinates if eq 14 is small enough.
The two-step procedure is, in this sense, not for improving
the energy degeneracy but for the better geometry in the DS.
Validity (or limitation) of the strategy can be assessed by
using eq 14 as will be shown later.

3. Computational Details
All calculations in this paper were carried out using the
CASSCF method implemented in GAUSSIAN 9830 with the
correlation-consistent polarized valence double-zeta (cc-
pVDZ) basis set. An active space of six electrons in six
orbitals was used, corresponding toπ orbitals. CASSCF were
carried out using theS1/S0 state-averaged orbital, with the
two states weighted equally.

To characterizeS1/S0 DS, we carried out two-step opti-
mizations described in the previous section. In the first step,
we used eq 4 as gradient until the square root of eq 14
becomes sufficiently small as will be shown in the next
section. In the second step, we used only the second term in
eq 4.

Starting from C2V planar structures, theS1/S0 DS was
scanned inC2 symmetry along the exocyclic methylene twist
motion with a step size of 5o up to C2V twisted structures.

Our calculation is not definitive because the CASSCF does
not take into account effects of dynamical electronic cor-
relation. However, the behavior we have predicted in this
paper would not be affected qualitatively by it.

4. Results and Discussion
The atomic numbering is shown in Figure 1. Hereafter,θ
denotes the twist angle of the exocyclic methylene. In Figure
2, we show the example of the two-step procedure locating
DP atθ ) 45o.

In eq 14, we have shown that the variables,WM, that have
overlap with both the intersection adapted coordinates and
the branching plane are dependent on the constrained
variables that also have overlap with these two spaces. From
eq 14, the square root of the gradient forWM in the intersection
adapted coordinates is given by

According to eq 15, how geometries are well optimized in
intersection adopted coordinates depends on the magnitude
of E1 - E0 and the gradient with respect to constrained

variables (∂E1/∂WS) in the first step [using the default gradient,
eq 4]. The value of (∂E1/∂VS,j) can roughly be estimated by
CS,j in eq 12c. AsCS,j includes the normalization factor of
the GD, the values ofCS,j are larger than (∂E1/∂VS,j). In the
system we targeted, only one variable,θ, is constrained. It
is known that mutual transformation between forces repre-
sented by Cartesian coordinates and by nonredundant internal
coordinates is possible.31 Furthermore, the physically sig-
nificant set can be written by the linear combination ofei.
Therefore, the right-hand side of eq 15 can be written by
usingθ.

Figure 1. Atom numbering using throughout this paper.

Figure 2. The example of the two-step procedure in locating
DP at θ ) 45o. The starting structure was produced by
replacing the value of θ of the DP at θ ) 40o by 45o. Open
symbols (diamond and circle) indicate the first step iteration.
Filled symbols (diamond and circle) indicate the second step
iteration. At iteration number 6, the first step (using the default
gradient gCIO (eq 4)) was completed, whereas the second step
(using the second term of gCIO (eq 4)) started from iteration
number 7.

Figure 3. The result of the S1/S0 DS along θ.
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The values of thex(E1-E0), which is the square root of the
difference between energies of theS1 andS0 andCS,θ that is
the value of eq 4 as the gradient alongθ, are given in Table
1. Furthermore, the upper bound ofxcS,θc′S,θ can also be
estimated by the inequality between arithmetic and geometric
means, i.e.,xcS,θc′S,θ e 0.5. The degree of optimization in
the variables which overlap with both intersection adapted
coordinates and the branching plane can therefore be
estimated as 0.5x2(E1-E0)CS,θ approximately. From Table
1, the gradient ofE1 with respect to the variables which
correspond toWM is approximately 0.0004 (inEh Å-1). From
our experience, this magnitude is small enough to reoptimize
from each point obtained in the first step to locate theS1/S0

DP using the second term of eq 4. We show the root-mean-
square (RMS in Cartesian coordinate) of projected gradient
on E1 [the first term in eq 4] whose component of exocyclic
methylene rotation is given in Table 1. According to the
values of RMS of Table 1, the geometry of the finally
obtained DP is optimized within 1.5× 10-3 Eh Å-1 at worst.
These RMS values are comparable to those of the residual
gradient optimized “loosely” by GAUSSIAN 98. There is
one more important condition for validity of the two-step
procedure. The tendency of change of the value of the RMS
indicates a similar change of the value of (16) alongθ. This
means the final geometry may be in the same intersection
adapted coordinates of the geometry which is obtained in
the first step. From our experiences, if the tendency of the
change of the final RMS is different from that of eq 16,
resultant DS would not be meaningful. In Figure 2, we show
the example of the two-step procedure locating DP atθ )
45o.

Now, it is in order to see some details of the characterized
DS. TheS1/S0 DS characterizedS1/S0 using the above strategy
is shown in Figure 3. A recent second-order derivative
calulation in theS1/S0 DS24 has revealed that DPplanar and
DPperp are second- and first-order saddle points, and DP63 is
almost the global minium on theS1 excited state andS1/S0

DS though its energy is slightly lowerd by pyramidalization.32

Our result is favorably compared with the second derivative
calculation. The energies of the two states agreed within 10-5

Eh for all the DPs located. Starting from DPplanar, we have
characterized theS1/S0 DS alongθ up to DPperp. This result
also tells us thatθ is the variable which has overlap with

both the intersection adapted coordinates and the branching
plane. Unless so, the first step optimization should converge
to DP.

The origin of degeneracy of DPplanarand DPperp is different.
In DPplanar, the degeneracy occurs by elongating the exocyclic
double bond and enhanced allylic character. On the other
hand, in DPperp,22 the degeneracy stems from the D1/D0

symmetry required conical intersection of the cyclopenta-
dienyl radical:33,34 The bonds that compose the five-
membered ring become more similar to each other. Indeed,
the bond lengths of C1-C2, C5-C1, and C2-C3 become
about 1.4 Å equally. In spite of the different origin of the
DP, Figure 4 shows that the electronic structure is continu-
ously changed from DPplanarto DPperp. This demonstrates that
DPplanar and DPperp are in the same DS.

The behavior of the exocyclic double bond C5-C6 is very
interesting. We expected that the tendency of the geometric
change of C5-C6 is changed in the vicinity of DP63

corresponding to the global minimum on theS1 state.
However, around DP63 (i.e., aroundθ ) 60o), there are no
particular changes. This implies that the electronic structure
is not changed around DP63. Instead, the tendency of the
geometric change of C5-C6 is changed around DP75. Hence,
we can imagine that the DPs betweenθ ) 0o andθ ) 75o

will be photochemically discriminated from the DPs between
θ ) 80o andθ ) 90o. To clarify the final product via theS1

state, we have performedS0 geometry optimizations using a
state-averaged orbital from structures near DP63, DP75, and
DP80. Starting structures were generated by distorting the
DP geometries in the direction of GD. These results indicate
that the product whose exocyclic methylene is rotated by
180o is available from DP80 but not from DP63 and DP75.
Therefore, if theS1 excited fulvene can reach the DPs
betweenθ ) 80o andθ ) 90o, then the exocyclic methylene
rotation by 180o is possible. If DPs in this area are stabilized
by the proper substitution so that theS1 excited fulvene can
reach this area, then cis-trans photoisomerization will
become possible. In the dibenzofulvene system whoseE-Z
photoisomerization is observed recently,25 adding the benzene
to fulvene may give rise to the stabilization of the DPs
betweenθ ) 80o andθ ) 90o.

Figure 4. Geometric change along S1/S0 DS. (a) carbon-carbon bond lengths and (b) carbon-hydrogen bond lengths.
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5. Conclusion
We have shown that the cancellation error is due to the
constraint of the variables that have components in both the
branching plane and the intersection adapted coordinates.
Accordingly, the valid condition for the two-step procedure
is limited. Taking into account the limitation, we have
characterized theS1/S0 DS along the exocyclic methylene
rotation coordinate of fulvene within 1.5× 10-3 Eh Å-1 in
energy at worst.

Our calculation, which we have shown in this paper, is
limited to C2 symmetry. Though systems which have no
symmetry like ref 25 should be explored, the following
conclusion would be worthy to be noted. The photophysical/
photochemical behavior changes in the continuous DS. The
DPs where the photochemical property changes are not the
saddle point on theS1/S0 DS within C2 symmetry. That is,
the product obtained viaS1/S0 DPs in the vicinity of DP63

does not change. It is difficult for the exocyclic methylene
to rotate by 180o, when theS1 excited fulvene transits toS0

via DPs between DPplanarand DP75. However, in DPs between
DP80 and DPperp, the exocyclic methylene rotation is expected.
Therefore, photochemically, DP80-perpmay be discriminated
from DPplanar-75.

Acknowledgment. We are grateful to Dr. Ohgi Taka-
hashi for a stimulating discussion. We sincerely acknowledge
the reviewers of this manuscript for valuable suggestions and
comments.

Supporting Information Available: Cartesian coor-
dinates of DPs geometries discussed in this paper. This
material is available free of charge via the Internet at http://
pubs.acs.org.

References

(1) Bernardi, F.; Olvucci, M.; Robb, M. A.Chem Soc. ReV. 1996,
25, 321-328.

(2) Migani, A.; Olivucci, M. Conical Intersection and Organic
Reaction mechanisms. InConical Intersections: Electronic
Structure, Dynamics and Spectroscopy, AdVance Series in
Physical Chemistry; Comcke, W., Yarkony, D. R., Ko¨ppel,
H., Eds.; World Scientific: Singapore, 2004; Vol. 15, pp
271-320.

(3) Manaa, M. R.; Yarkony, D. R.J. Am. Chem. Soc.1994, 116,
11444-11448.

(4) Bearpark, M. J.; Robb, M. A.; Schlegel, H. B.Chem. Phys.
Lett. 1994, 223, 269-274.

(5) Palmer, I. J.; Ragazos, I. N.; Bernardi, F.; Olivucci, M.; Robb,
M. A. J. Am. Chem. Soc.1993, 115, 673-682.

(6) Venturini, A.; Vreven, T.; Bernardi, F.; Olivucci, M.; Robb,
M. A. Organometallics1995, 14, 4953-4956.

(7) Migani, A.; Robb, M. A.; Olivucci, M.J. Am. Chem. Soc.
2003, 125, 2804-2808.

(8) Yarkony, D. R.J. Phys. Chem. A2004, 108, 3200-3205.

(9) Takahashi, O.; Sumita, M.J. Chem. Phys.2004, 121, 7030-
7031.

(10) Takahashi, O.; Sumita, M.J. Mol. Struct. THEOCHEM2005,
731, 173-175.

(11) Yamazaki, S.; Kato, S.J. Chem. Phys.2005, 123, 114510-
13.

(12) Bearpark, M. J.; Blancafort, L.; Paterson, M. J.Mol. Phys.
2006, 104, 1033-1038.

(13) Sumita, M.; Saito, K.Chem. Phys. Lett.2006, 424, 374-
378.

(14) Shindo, K.; Lipsky, S.J. Chem. Phys.1996, 45, 2292-2297.

(15) Foote, J. K.; Mallon, M. H.; Pitts, J. N., Jr.J. Am. Chem.
Soc.1966, 88, 3698-3702.

(16) Wilzbach, K. E.; Harkness, A. L.; Kaplan, L.J. Am. Chem.
Soc.1968, 90, 1116-1118.

(17) Kaplan, L.; Wilzbach, K. E.J. Am. Chem. Soc.1968, 90,
3291-3292.

(18) Kent, J. E.; Harman, P. J.; O’Dwyer, M. F.J. Phys. Chem.
1981, 85, 2726-2730.

(19) Harman, P. J.; Kent, J. E.; O’Dwyer, M. F.; Smith, M. H.
Aust. J. Chem.1979, 32, 2579-2587.

(20) Domaille, P. J.; Kent, J. E.; O’Dwyer, M. F.Chem. Phys.
1974, 6, 66-75.

(21) Brown, R. D.; Domaille, P. J.; Kent, J. E.Aust. J. Chem.
1970, 23, 1707-1720.

(22) Bearpark, M. J.; Bernardi, F.; Olivucci, M.; Robb, M. A.;
Smith, B. R.J. Am. Chem. Soc.1996, 118, 5254-5260.

(23) Dreyer, J.; Klessinger, M.J. Chem. Phys.1994, 101, 10655-
10665.

(24) Paterson, M. J.; Bearpark, M. J.; Robb, M. A.; Blancafort,
L. J. Chem. Phys.2004, 121, 11562-11571.

(25) Barr, J. W.; Bell, T. W.; Catalano, V. J.; Cline, J. I.; Phillips,
D. J.; Procupez, R.J. Phys. Chem. A2005, 109, 11650-
11654.

(26) Deeb, O.; Cogan, S.; Zilberg, S.Chem. Phys.2006, 325,
251-256.

(27) Yarkony, D. R. Conical Intersection and Organic Reaction
mechanisms. InConical Intersections: Electronic Structure,
Dynamics and Spectroscopy, AdVance Series in Physical
Chemistry; Comcke, W., Yarkony, D. R., Ko¨ppel, H., Eds.;
World Scientific: Singapore, 2004; Vol. 15, pp 41-127.

(28) Dallos, M.; Lischka, H.; Shepard, R.; Yarkony, D. R.; Szalay,
P. G.J. Chem. Phys.2004, 120, 7330-7339.

(29) Lu, D.-H.; Zhao, M.; Truhlar, D. G.J. Comput. Chem.1991,
12, 376-384.

(30) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G.
E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.;
Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.;
Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.;
Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.;
Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford,
S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.;
Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari,
K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov,
B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,
M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.;
Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.;

S1/S0 Degeneracy Space of Fulvene J. Chem. Theory Comput., Vol. 4, No. 1, 200847



Wong, M. W.; Andres, J. L. M.; Head-Gordon, M.; Replogle,
E. S.; Pople, J. A.Gaussian 98 (ReVision A.11.3); Gaussian,
Inc.: Pittsburgh, PA, 1998.

(31) Schlegel, H. B.Theor. Chim. Acta1984, 66, 333-340.

(32) Sicilia, F.; Bearpark,M. J.; Blancafort, L.; Robb, M. A.Theor.
Chem. Acc.2007, 118, 241-251.

(33) Borden, W. T.; Davidson, E. R.J. Am. Chem. Soc.1979,
101, 3771-3775.

(34) Yu, L.; Cullin, D. W.; Williamson, J. M.; Miller, T. A.J.
Chem. Phys.1993, 98, 2682-2682.

CT700190M

48 J. Chem. Theory Comput., Vol. 4, No. 1, 2008 Sumita and Saito



Inductive and External Electric Field Effects in
Pentacoordinated Phosphorus Compounds

Enrique Marcos, Ramon Crehuet,* and Josep M. Anglada*

Grup de Quı´mica Teo`rica i Computacional, Departament de Quı´mica Orgànica
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Abstract: Pentacoordination at phosphorus is associated with a nucleophilic displacement

reaction at tetracoordinated phosphorus compounds and shows a great variability in what

respects their geometrical and energetic features. By means of a systematic theoretical study

on a series of elementary model compounds, we have analyzed the bonding features. The

pentacoordinated phosphorus compounds are held together by dative bonds, and the geometry

and stability depends on the inductive effects originated by different substitutes at phosphorus.

We show also that an external electric field can modify the geometrical features and the reactivity

of the nucleophilic substitution reactions. This issue may have great interest in biological reactions

involving pentacoordinated phosphorus where the electric field originated by the folded protein

could influence the catalytic process. We report also additional calculations on the geometry

and NMR spectra on three triphenyl phosphonium ylide derivatives, and our results compare

well with the experimental data.

Introduction
A detailed knowledge on the electronic nature of penta-
coordination at phosphorus is of great interest in chemistry
and biochemistry.1-12 Pentacoordination at phosphorus is
mainly associated with a nucleophilic displacement reaction
at tetracoordinated phosphorus compounds, which is associ-
ated with cell signaling and energetics and many aspects of
biosynthesis. These nucleophilic reactions occur in the so-
called associative processes, which can follow a concerted
pathway, with a trigonal bipyramid transition state, or an
addition-elimination pathway, involving a pentacoordinated
phosphorane intermediate.7-9,11,13,14 These processes are
important in chiral reactions. Those following a concerted
pathway take place with inversion of configuration, but in
pathways involving pentacoordinate intermediates, a Berry
pseudorotation may occur, which could involve retention of
configuration.5,11Pentacoordinated phosphorus intermediates
are found, for instance, in the Wittig reaction,15 in human
R-thrombin inhibitors,1 and as intermediates in the hydrolysis

of phospholipids catalyzed by phospholipase D.6 It may exist
in phosphoryl transfer in GTP hydrolysis by RAS proteins10

and as an intermediate in the phosphoryl transfer reaction
catalyzed by aâ-phosphoglucomutase,2,16 although some
controversy exists in the literature regarding the true nature
of this intermediate.3,4

Pentacoordination at phosphorus occurs mainly in trigonal
bipyramid structures, and it has been observed that the apical
bond lengths show a great variability, which depends on
several factors as the nature of the substitutes at P, the
influence of hydrogen bonding or the charge around phos-
phorus.1,10,11,17,18It appears therefore that such variability
would affect not only the stability of these compounds but
also the transition states involving pentacoordination at
phosphorus and consequently the reactivity. The factors
affecting this variability are crucial for a complete under-
standing of nucleophilic displacement at phosphorus. They
are still not well rationalized and are the main goal of this
study.

Extensive theoretical studies have also been reported in
the literature, which have provided valuable information
regarding different aspects of the reaction mechanisms of

* Corresponding author e-mail: anglada@iiqab.csic.es (J.M.A.),
rcsqtc@iiqab.csic.es (R.C.).
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phosphate reactions, the importance and possible existence
of pentacoordinated intermediates depending on the reaction
conditions, and the effects of the solvent in the reactivity.19-47

In this study we have focused our attention on the inductive
effects affecting pentacoordination at phosphorus and its
bonding features. To this end, we have considered, in the
first stage, a series of model systems for which we have
investigated the effect of different substitutes at phosphorus
as well as the effect of polarization and the effect of an
external electric field. In the second stage, we have also
investigated a series of triphenylphosphonium ylide deriva-
tives for which experimental data exist in the literature.

Computational Details
All geometry optimizations carried out in this work have
been performed with the density functionalmPW1PW9148

employing the 6-31+G(d) basis set.49 At this level of theory
we have also calculated the harmonic vibrational frequencies
to verify the nature of the corresponding stationary point
(minima or transition state) and to provide the zero point
vibrational energy (ZPE). ThemPW1PW91 functional has
been found to be adequate to describe systems with long-
range interactions, especially with dative bonds.50 Moreover,
the reliability of this functional, with respect to the geo-
metrical parameters, has also been checked by performing,
for some test models, comprehensive test calculations
employing the MP251-53 ab initio approach and using the
6-31+G(d), 6-311+G(d), and 6-311+G(3df, 3pd) basis sets.
The results obtained compare quite well and are collected
in the Supporting Information. Moreover, for the cases where
reactivity has been considered, we have performed, for each
transition state, intrinsic reaction coordinate calculations
(IRC)54-56 in order to ensure that the transition states connect
the desired reactants and products. In the second step, the
relative energies of the stationary points were corrected by
performing single point energy calculations using the
mPW1PW91 functional with the 6-311+G(3df,2p) basis
set.57 In addition, we have also checked the reliability of the
activation and reaction energies by performing, for all
stationary points of a given reaction (reaction1b, see below),
additional single point energy calculations at the higher level
of theory CCSD(T)/IB.58-62 The results obtained at the
mPW1PW91 and CCSD(T) level compare very well and are
contained in the Supporting Information.

For the three triphenylphosphonium ylides considered, we
have also computed the NMR spectra by performing B3LYP
single-point calculations63 at the optimized geometries, using
the GIO method64,65and employing the 6-311+G(2d,p) basis
set.57

The quantum chemical calculations carried out in this work
were performed by using the Gaussian66 program package,
and the Molden program67 was employed to visualize the
geometric and electronic features.

The bonding features of the different systems considered
were analyzed by employing the natural bond orbital (NBO)
partition scheme by Weinhold and co-workers68 and the
atoms in molecules (AIM) theory by Bader.69 The topological
properties of wave functions were computed using the
AIMPAC program package.70

Results and Discussion
The Model Systems POX2(RO)2 Pentacoordinated Com-
pounds. One important point regarding the chemistry of
pentacoordinated phosphorus compounds refers to the vari-
ability of the apical bond distances.5,11 In order to analyze
and rationalize this issue we have carried out a series of
calculations on the POX2(RO)2 model systems. These
pentacoordinated model systems have been depicted in
Scheme 1 and possess a trigonal bipyramid structure. Here
X are equatorial substitutes (X) CH3 (a); HO (b); CH3O
(c); and F (d)) and RO are apical substitutes (RO) HO (1);
CH3O (2); HCOO (3); and CF3O (4)). Along this work, the
different models are labeled by a number as a prefix,
according to the apical substitutes, followed by a letter as a
suffix according to the equatorial substitutes. Thus, com-
pound1acorresponds to PO(CH3)2(OH)2, whereas compound
3c corresponds to PO(CH3O)2(HCOO)2 (see Scheme 1).

Please note also that in these model systems the charge
of the system is-1, the two apical substitutes are identical,
and that in b and c the two equatorial substitutes are
oppositely oriented. Moreover, it is also worth reminding
the reader that the donor character of the apical substitutes
is HO > CH3O > HCOO > CF3O and the donor character
of the equatorial substitutes is CH3 > HO > CH3O > F so
that these series of model systems allow us to analyze
combinations of electron withdrawing groups and electron
donor groups on the phosphorus coordination. The most
significant geometrical parameters of the optimized structures
are displayed in Table 1, which also includes the tetracoor-
dinated phosphoric acid H3PO4 for comparison. Figure 1
shows the dependence of the apical bond lengths with respect
to the apical and equatorial substitutes at P. The Cartesian
coordinates of each pentacoordinated model system are
reported in the Supporting Information.

For H3PO4, Table 1 shows that our calculations predict
the P‚‚‚O bond length to be 1.476 Å and the three P‚‚‚OH

Scheme 1 a

a RO ) HO (1); CH3O (2); HCOO (3); CF3O (4).
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bond lengths to be 1.602 Å. The nucleophilic addition of
the HO anion to H3PO4 leads to the pentacoordinated
compound1b and produces a lengthening of 0.051 Å in the
P‚‚‚O bond and of 0.058 Å in the equatorial P‚‚‚OH bonds,
compared with the P‚‚‚O and the P‚‚‚OH bond lengths in
phosphoric acid, but the two apical P‚‚‚OH bond distances
(1.768 Å) are predicted to be much longer (see Table 1).

Regarding the remaining pentacoordinated model systems,
the results of Table 1 and Figure 1 show a great variability
of the P‚‚‚ORapical bond length, which depends on the
character of both X and RO. Thus, the apical bond distance
changes as much as 0.238 Å, from 1.742 Å in1c to 1.980 Å
in 4a, whereas the changes in the equatorial bond lengths
(P‚‚‚Xequatorialand P‚‚‚Oequatorial) are smaller than 0.070 Å for
all the model compounds. Table 1 and Figure 1 also show
that, for the same equatorial substitute, the P‚‚‚ORapicalbond
length is shorter as the donor character of OR increases, while
the donor character of the equatorial substitute X results in
an increase of the P‚‚‚ORapicalbond length. Thus, for instance,
for X ) CH3, the P‚‚‚Oapical bond distance changes from
1.814 Å in 1a (apical substitute) OH) to 1.980 Å in4a
(apical substitute) OCF3), while for X ) CH3O, the
P‚‚‚Oapicalbond distance changes from 1.742 Å in1c (apical

substitute) OH) to 1.883 Å in4c (apical substitute) OCF3)
(see Table 1 and Figure 1). In the case whether the equatorial
substitute X is F, we have only found pentacoordinated
compounds with apical substitutes HCOO (3d) and CF3O
(4d).

These results indicate two important points, namely a
different nature of the apical and equatorial bonds and a great
importance of inductive effects on pentacoordinated phos-
phorus compounds. In order to get a deeper knowledge of
the features of bonding at phosphorus, we have carried out
a study of the bond properties according to the Atoms in
Molecules (AIM) theory by Bader and the Natural Bond
Orbital (NBO) theory by Weinhold. A detailed discussion
of the AIM analysis is given in the Supporting Information
along with the computed topological parameters at the bcp
of the P‚‚‚Oapical, the P‚‚‚Xequatorial, and the P‚‚‚O bonds
collected in Table S4. In general, and regarding the apical
bonds, the range of values forFb and∇2Fb are characteristic
of “closed shell” interactions, so thatthe two apical bonds
in these model systems can be classified as datiVe. The large
variability of the P‚‚‚O apical bonds pointed out above,
depending on the nature of the substitutes, is also typical of
dative interactions.71,72

Additional information is provided by the NBO analysis.
In Table 2 we have displayed the natural occupation at the
P atom, the natural charge on P, and the stabilization energies
(∆E(2)) associated with the charge-transfer interactions of
the relevant donor-acceptor orbitals involving the apical
bonds, that is, the bondingσ(P-Oapical), σ(P-Xequatorial), and
σ(P-O) NBOs with the antibonding acceptorσ*(P-Oapical)
NBO. This stabilization energy has been computed with the
second-order perturbation theory with the Fock matrix in the
NBO analysis and the natural charges on phosphorus. The
NBO analysis indicates that the natural occupation in the d

Table 1. Optimized Bond Lengths (in Å) to Phosphorus in
H3PO4 and the Pentacoordinated 1a-4d Model
Compounds

substitutes

compd apical equatorial r(P-ORapical) r(P-Xequatorial) r(P-O)

H3PO4 1.602 1.476
1a OH CH3 1.814 1.849 1.545
1b OH OH 1.768 1.660 1.527
1c OH OCH3 1.742 1.673 1.539
2a OCH3 CH3 1.841 1.841 1.521
2b OCH3 OH 1.778 1.660 1.510
2c OCH3 CH3 1.749 1.677 1.514
3a OC(H)O CH3 1.908 1.832 1.507
3b OC(H)O OH 1.835 1.635 1.495
3c OC(H)O OCH3 1.818 1.639 1.499
3d OC(H)O F 1.780 1.609 1.496
4a OCF3 CH3 1.980 1.826 1.488
4b OCF3 OH 1.878 1.625 1.480
4c OCF3 OCH3 1.882 1.616 1.484
4d OCF3 F 1.808 1.591 1.476

Figure 1. Diagram showing the dependence of the apical
bond lengths in the pentacoordinated POX2(RO)2 model
compounds on the nature of the apical (RO) and equatorial
(X) substitutes on P.

Table 2. Natural Occupation at Phosphorus, Stabilization
Energies (∆E(2) in kcal‚mol-1) Associated with the Most
Important Donor-Acceptor Interaction Involving the Apical
Bonds and the Natural Charges at Phosphorus (Q in e)d

stabilization energiesP natural
occupation

compd s p d
σP1O5 f

σP1O6
/ a

σP1X f

σP1O6
/ b

σP1O2 f

σP1O6
/ c QNBO(P)

1a 0.91 1.85 0.09 33.51 30.67 28.88 2.12
1b 0.77 1.59 0.11 29.80 22.66 21.59 2.51
1c 0.77 1.56 0.11 28.86 20.02 23.54 2.54
2a 0.91 1.81 0.08 31.86 39.14 27.90 2.17
2b 0.77 1.55 0.10 25.50 30.71 20.28 2.56
2c 0.76 1.51 0.10 24.27 24.41 16.98 2.59
3a 0.94 1.82 0.08 35.52 35.23 31.58 2.13
3b 0.77 1.57 0.10 29.04 24.04 23.34 2.53
3c 0.77 1.53 0.10 28.80 24.08 22.12 2.58
3d 0.76 1.49 0.11 24.88 20.59 24.90 2.62
4a 0.95 1.82 0.07 35.94 38.97 34.06 2.12
4b 0.77 1.57 0.10 29.43 24.43 26.59 2.53
4c 0.77 1.53 0.10 32.39 25.32 27.89 2.58
4d 0.75 1.50 0.11 28.48 22.90 28.43 2.62
a σP1O5 f σP1O6

/ has the same value as σP1O6 f σP1O5
/ . b The same

interaction occurs from each σPX equatorial to each σPO
/ apical bond.

c σP1O2 f σP1O6
/ has the same value as σP1O2 f σP1O5

/ . d Bond
numbering is according Scheme 1.
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shell is always less than or equal to 0.11 and consequently
excludes the participation of the d-orbital in the hybridization
picture. Thus, there is a formal sp2 hybridization at P in all
pentacoordinated model compounds. The d orbitals act as
polarization functions in a similar way as pointed out by
Reed and co-workers in a study on chemical bonding in
hypervalent molecules73 and in pentacoordinated silicon
compounds bonded also by dative bonds.72 This formal
hybridization scheme is also compatible with the simple MO
diagram based on a three-center four-electron (3c4e) model.11,74

Another important point to be mentioned here refers to the
topological features of the NBO orbitals linked to phospho-
rus. Those NBO orbitals designed as bonding orbitals of the
type P‚‚‚O or P‚‚‚F in Table 2 are highly polarized toward
the O or F atom, whereas those designed as antibonding
orbitals have an almost exclusive contribution of phosphorus.
Thus, the donor-acceptor interaction between these NBOs
displayed in Table 2 represents quite well charge-transfer
interactions. Moreover, this topological picture agrees very
well with the dative description of the P‚‚‚O bonds provided
by the AIM analysis and discussed above. By the same way,
the P‚‚‚C bonds in compounds1a, 2a, 3a, and4a (with CH3

as equatorial substitutes) have an almost equal contribution
of phosphorus and carbon, according to the covalent character
predicted by the AIM analysis (see above). The most
important perturbative donor-acceptor interactions involving
the equatorial substitutes (σPX-equatorialf σ*PO-apical) are those
having X) CH3 (compounds1a, 2a, 3a, and4a) according
to the well-known donor character of the methyl substitute
and decreases according to the donor character of the
equatorial substitutes (see above). Also very interesting are
the perturbative donor-acceptor interactions between the two
apical bonds (σP1O5 f σ*P1O6) and (σP1O6 f σ*P1O5) that
involve charge transfer between the two apical bonds. Here
it is also worth pointing out that these apical donor-acceptor
interactions are symmetrical because the two apical groups
are the same (see footnote b of Table 2). However, as will
be shown below, when the two apical groups are different,
the two apical donor-acceptor interactions are different,
pointing out the competition of these two groups to form a
dative bond to phosphorus and therefore having a direct
influence on the corresponding P‚‚‚O bonds.

Nucleophilic Substitution on the Model POX2(OR)2

Pentacoordinated Compounds.A very important point
concerning the pentacoordinated POX2(OR)2 compounds
discussed above refers to their relative stability. This has
been studied in connection with the formation via a SN2
reaction according to eq 1.

Please note that in this section, all reactions considered
are symmetric as the entrance and leaving groups are
identical. Each reaction described by eq 1 has been named
according to the substitutes in the same way as has been
done in the previous section to characterize the pentacoor-
dinated phosphorus model compounds as displayed in
Scheme 1. Thus, for instance, reaction1a means RO- )
HO- and X) CH3, or reaction4c means RO) CF3O- and
X ) OCH3; that is, each reaction has the same name that
identifies the pentacoordinated intermediate. A schematic
representation of the corresponding potential energy surfaces
has been drawn in Figures 2 and 3, whereas the geometric
parameters of the corresponding stationary points are col-
lected in the Supporting Information. The energetic of these
processes is contained in Table 3.

Figure 2a shows a schematic potential energy profile of
reactions 1a-4a, having the CH3 group as equatorial
substitute X. Each reaction begins with the formation of a
prereactive hydrogen-bonded complex which occurs previous
to the transition state and the formation of the pentacoordi-
nate intermediate. Every prereactive complex has two
hydrogen bonds, which occur between the oxygen of the
anion (RO-) and one of the hydrogen atoms of each
equatorial methyl substitute. For reaction3a (red line, having
HCOO as apical substitutes), the two hydrogen bonds in the
prereactive complex are formed between each one of the
oxygen atoms of the HCOO anion and one of the hydrogen
atoms of each equatorial methyl substitute. The stability of
these hydrogen-bonded complexes at 0 K is computed to
vary among 24.3 and 16.6 kcal‚mol-1 (for reactions1a-4a,
see Table 3), and these energy values in gas phase are typical
of hydrogen bond interactions involving an anion. After
surmounting an energy barrier of the order of 5-6 kcal‚mol-1,
the corresponding pentacoordinate intermediate is formed,
and its stability, at 0 K, is computed to be among 33.1 and
15.9 kcal‚mol-1, relative to RO- plus POX2(OR). The
stability in these intermediates depends on the donor
character of the apical substitutes. There is a large difference
in the relative stability of the1a (blue line, apical substitute
HO) and the stability of4a (black line, with apical substitute
CF3O), which amounts 16 kcal‚mol-1, so thatthe compounds
haVing the apical substitute with higher donor character are
more stable.This higher stability is associated with shorter
apical bond lengths as discussed in the previous section for
compounds1a, 2a, 3a, and4a.

In the case of the two equatorial (Figure 2b) substitutes X
is the F atom, and we have only considered the reaction with
RO- ) HCOO- (3d) and RO- ) CF3O- (4d), since these
are the only ones in which the F substitutes remain in the
equatorial position as pointed out in the previous section.
Both reactions occur by direct formation of a pentacoordi-
nated phosphorus compound, whose stability at 0 K has been
computed to be 32.1 and 20.7 kcal‚mol-1, for 3d (red line)
and4d (black line), respectively, according also to the higher
donor character of the apical substitute in3d (see also Table
3). The processes are similar to those described recently by
van Bochove and co-workers24 in a recent study on nucleo-
philic substitution at phosphorus having fluorine atoms as
equatorial substitute.
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For the equatorial substitute X) OH, namely reactions
1b-4b, the precursors of the corresponding pentacoordi-
nated phosphorus compound are not RO- and PO(OH)2OR
as described in eq 1, but its respective conjugate acid
(ROH) and basis (PO(OH)(O)OR-), which occurs because
PO(OH)2OR is a stronger acid than H2O, CH3OH, HCOOH,
and CF3OH, respectively (among 13.3 and 64.6 kcal‚mol-1,
see reactions1b-4b in Table 3). Therefore, these model
reactions involve a proton transfer linked to the formation
of a pentacoordinated phosphorus compound, in a similar
way as many reactions of biological interest. The schematic
reaction profiles are depicted in Figure 3a, which shows that
the reaction begins with the formation of a hydrogen-bonded
complex which occurs previous to the formation of the
pentacoordinated intermediate. This is a concerted process
where the proton transfer from ROH to PO(OH)(O)OR-

takes place simultaneously to the addition of the RO group

to phosphorus. The results displayed in Table 3 and Figure
3a show that the computed stability of the prereactive
hydrogen-bonded complexes ranges among 12.7 and 27.2
kcal‚mol-1 and that the barrier that has to be overcome to
form the pentacoordinated intermediate ranges among 37.1
and 27.5 kcal‚mol-1 for 1b-4b, respectively. Table 3 and
Figure 3a show that all pentacoordinated intermediates lie
energetically above the reactants (among 17 and-0.4
kcal‚mol-1). This reaction mechanism and the corresponding
energetic profile is comparable to that of the dimethylphos-
phate hydrolysis and the ethylene phosphate hydrolysis
reported recently.26,28

The last model reactions we have considered are those
having X) CH3O as equatorial substitutes and correspond
to reactions1c-4c. A look at the schematic energy profile
in Figure 3b shows that, for1c, 2c, and3c (blue, green, and
red lines respectively), the reaction has a 5-fold well. As

Figure 2. Schematic potential energy diagram for the nucleophilic substitution reactions: In (a), RO- + PO(OR)(CH3)2 f

PO(OR)(CH3)2 + RO-: (RO ) HO, blue line; CH3O, green line; HCOO, red line; and CF3O, black line). In (b), RO- +
PO(OR)(F)2 f PO(OR)(F)2 + RO-: (RO ) HCOO, red line; CF3O, black line). The relative energies are computed at the
mPW1PW91/6-311+G(3df,2p)//mPW1PW91/6-31+G(d) level of theory.
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before, the reactions begin with the formation of a penta-
coordinated hydrogen-bonded complex (first minimum),
while the second, third, and fourth minima correspond to
the pentacoordinated intermediates with the OCH3 equatorial
substitutes having different orientations, namely parallel to
the side of the reactants (INT1 ), opposite (INT2 ), and
parallel to the side of the products (INT1 ). The occurrence
of similar multiple transition states separating the penta-
coordinated species from the precursor complexes has been
reported recently by van Bochove and co-workers,24 who
addressed this phenomenon to the increased steric bulk. For
4c (black line) only one pentacoordinated intermediate has
been found (INT2 ), being that the CH3O equatorial substi-
tutes are oppositely oriented. A more detailed discussion on
these different conformers of the pentacoordinated phospho-
rus compounds will be given in the next section, and, for
the aim of this section, it is only worth remarking here that
the stability of the two pentacoordinated conformers differ

only at most by 3 kcal‚mol-1 (see Table 3). The results
displayed in Table 3 reveal that the prereactive hydrogen-
bonded complexes are computed to be among 26 and 15
kcal‚mol-1 more stable than the reactants, and the formation
of the pentacoordinated intermediate requires to surmount
an energy barrier of among 7 and 12 kcal‚mol-1. Moreover,
the stability of the pentacoordinated phosphorus intermediates
follows the same trends as discussed above, namely that the
intermediates having apical substitutes with higher donor
character are more stable. That is 35.7 kcal‚mol-1 for 1c
(apical substitute HO); 25.4 kcal‚mol-1 for 2c (apical
substitute CH3O); 15.2 kcal‚mol-1 for 3c (apical substitute
HCOO); and 3.5 kcal‚mol-1 for 4c (apical substitute CF3O).
In addition, it is also worth mentioning that, as shown in
Table 3, in the case of1c and2c (having apical substitutes
with a large donor character) the pentacoordinated phospho-
rus intermediates are considerably more stable than the

Figure 3. Schematic potential energy profiles for the nucleophilic substitution reactions: RO- + PO(OR)(X)2 f PO(OR)(X)2 +
RO-: (RO ) HO, blue line; CH3O, green line; HCOO, red line; and CF3O, black line) in (a) X ) (HO) and in (b) X ) (CH3O).
The relative energies are computed at the mPW1PW91/6-311+G(3df,2p)//mPW1PW91/6-31+G(d) level of theory.
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prereactive hydrogen-bonded complexes, as opposed to what
occurs for3c and4c.

Finally, it is also worth pointing out that the main reaction
features described for these nucleophilic substitutions at
phosphorus occur also in nucleophilic substitution reactions
at silicon as reported by Bento and co-workers.75

Conformational Change in Equatorial Substitutes. The
Polarization Effects.In the previous section we have pointed
out that reactions1c-3c occur in several steps involving
conformational changes in the orientation of the CH3O
equatorial substitutes. The corresponding energy barriers are
smaller than 3.0 kcal‚mol-1, whereas the two conformers
differ in energy at most by 3 kcal‚mol-1 (see Table 3).
Despite these small energetic differences in the two con-
formers, an analysis of its structures reveals significant
differences with respect to the geometrical parameters
concerning the apical substitutes. Therefore we have inves-
tigated the effect of the conformational changes (opposite
and parallel orientation) on the equatorial substitutes in the
model systems having HO and CH3O as equatorial substi-
tutes. In the case of the HO equatorial substitutes, only the
model having HO as apical substitutes has both conformers
stable (1b and 1b′), whereas for the CH3O equatorial
substitutes the models with the HO, CH3O, and HCOO apical
substitutes have the two conformers stable (1c and1c′; 2c
and2c′; and3c and3c′; respectively). In Figure 4 we have
displayed the most significant geometrical parameters of
these conformers.

As pointed out in a previous section, the1b model has
the two apical P‚‚‚O(H) bond lengths equal to 1.768 Å (see
Table 1). However a conformational change in the equatorial
substitute leading to a parallel orientation (model1b′)
produces an important change in the two apical P‚‚‚O(H)
bond lengths (1.695 and 1.910 Å, respectively); that is, the
P‚‚‚O apical bond length opposite to the orientation of the
two equatorial OH substitutes is reduced by 0.073 Å and
the other P‚‚‚O apical bond length is enlarged by 0.142 Å.

On the other hand, the changes in the equatorial bond lengths
are very small (see Figure 4). From an energetic point of
view, both conformers are separated by only 0.87 kcal‚mol-1

(∆(E + ZPE) value), being that1b′ is more stable than1b.
Looking for the origin of these differences we have first
considered the possible existence of intramolecular hydrogen
bond interactions that could stabilize one of these two
conformers, but the AIM analysis ruled out this fact.
Moreover, the NBO analysis indicates that the parallel
orientation of the equatorial substitutes (structure1b′) induces
a differential polarization effect on P, which results in a
change of the phosphorus ability to bear an electronic charge
and affecting therefore the axial bond length. In other words,
the polarization on P produces a greater or less repulsion
with the axial group (depending on the side) originating a
change on the corresponding equilibrium bond distance. This
polarization effect is not produced in those compounds with
opposite oriented equatorial substitutes (structure1b) because
of a cancellation effect due to the opposite orientation. For
1b, the NBO analysis has already been reported in a previous
section (see Table 2), where it has been pointed out that
charge transfer occurs symmetrically. The perturbative
donor-acceptor interactions involving the equatorial sub-
stitutes (σPO-equatorialf σ*PO-apical) are equal to 22.6 kcal‚mol-1

(from each of the twoσPO-equatorial to each of the two
σ*PO-apical), whereas perturbative donor-acceptor interactions
between the two apical bonds (σP1O5 f σ*P1O6andσP1O6 f
σ*P1O5) are both equal to 29.8 kcal‚mol-1. In the case of the
conformer 1b′, the situation changes radically, and the
perturbative donor-acceptor interactions are not symmetrical
anymore. The inductive effects, reflected in the perturbative
donor-acceptor interactions involving the equatorial sub-
stitutes (σP1O3 f σ*P1O6 and σP1O4 f σ*P1O6), are 25.2
kcal‚mol-1, whereas (σP1O3 f σ*P1O5 and σP1O4 f σ*P1O5)
are 20.5 kcal‚mol-1. That is, there is a greater charge transfer
to the P1O6 side (σ*P1O6orbital) that affects the perturbative
donor-acceptor interactions between the two apical bonds

Table 3. Relative Energies (∆(E+ZPE) in kcal‚mol-1) Computed at the mPW1PW91/6-311+G(3df,2p)// mPW1PW91/
6-31+G(d) Level of Theory for the Nucleophilic Substitution Reactions 1a-4d

reactiona
RO- +

POX2(OR)
ROH +

POX2(OR)- complex TS1 INT1 TS2 INT2

1a 0.0 -24.3 -19.4 -33.1
2a 0.0 -18.1 -13.3 -22.0
3a 0.0 -20.4 -14.0 -17.9
4a 0.0 -16.6 -9.9 -15.9
1b 64.6 0.0 -12.7 24.4 17.2
2b 52.4 0.0 -13.0 22.3 16.5
3b 28.7 0.0 -18.8 5.7 1.3
4b 13.3 0.0 -27.2 0.3 -0.4
1c 0.0 -25.8 -18.9 -34.9 -32.7 -35.7
2c 0.0 -20.4 -13.2 -22.4 -19.9 -25.4
3c 0.0 -18.3 -11.5 -14.2 -12.7 -15.2
4c 0.0 -15.1 -2.2 -3.5
3d 0.0 -32.1
4d 0.0 -20.7

a The following acronyms stand for the corresponding reactions: 1a ) HO- + OP(CH3)2(HO); 2a ) CH3O- + OP(CH3)2(CH3O); 3a ) HCOO-

+ OP(CH3)2(HCOO); 4a ) CF3O- + OP(CH3)2(CF3O); 1b ) HO- + OP(OH)2(HO); 2b ) CH3O- + OP(OH)2(CH3O); 3b ) HCOO- +
OP(OH)2(HCOO); 4b ) CF3O- + OP(OH)2(CF3O); 1c ) HO- + OP(OCH3)2(HO); 2c ) CH3O- + OP(OCH3)2(CH3O); 3c ) HCOO- +
OP(OCH3)2(HCOO); 4c ) CF3O- + OP(OCH3)2(CF3O); 3d ) HCOO- + OPF2(HCOO); 4d ) CF3O- + OPF2(CF3O).
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(σP1O5 f σ*P1O6 ) 32.1 kcal‚mol-1 andσP1O6 f σ*P1O5 )
27.7 kcal‚mol-1), and, consequently, we can conclude that
the differential polarization effect originated by the confor-
mational change induces a competition between the two
equal apical substitutes in the pentacoordinated phosphorus
compound.

In order to visualize this induced polarization effect on P,
we have considered the phosphoryl moiety derived from the
two conformers1b and1b′, that is, we have deleted in both
conformers the two apical substitutes. In the two resulting
PO(OH)2 moieties (one with the two HO opposite oriented
and the other with the two HO parallel oriented) we have
computed the molecular electrostatic potential (MEP), and
the corresponding results are plotted in Figure 5. The
phosphoryl having the two HO substitutes oppositely ori-
ented, that derived from1b, (Figure 5a) has a symmetric

distribution of the MEP in both sides of the equatorial plane,
but, the phosphoryl group having the two HO substitutes
parallel oriented, that derived from1b′, does not. Figure 5b,c

Figure 4. Selected geometrical parameters (in Å) for the optimized structures 1b, 1b′, 1c, 1c′, 2c, 2c′, 3c, and 3c′.

Figure 5. Molecular electrostatic potential representation of
the PO(OH)2 phosphoryl moiety of 1b and 1b′ in a plane
containing 98% of the electronic density: (a) one of the two
symmetrical planes of 1b; (b) opposite side of the equatorial
hydrogens in 1b′; and (c) side having the equatorial hydrogens
in 1b′.
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shows that it has a more positive charge density in the
opposite side of the equatorial hydrogens. These results agree
very much with the above discussion on1b′, where we have
pointed out that a parallel orientation of the equatorial HO
substitutes originates a large charge transfer to the side of
the equatorial hydrogens (P1O6 bond in Figure 4).

A similar situation occurs with the compounds with
equatorial substitutes CH3O, structures1c-3c, and their
corresponding conformers1c′-3c′. In a similar way as
discussed above for1b and 1b′, and as pointed out in the
previous section, each pair of conformers differs at most by
3 kcal‚mol-1, being that the conformersc are more stable
than the conformersc′ (see Table 3). Figure 4 shows that
compounds1c-3c have the CH3O equatorial substitutes
oppositely oriented and the two apical bond lengths equal
(see also Table 1 and above), but a conformational change
leading to the two equatorial substitutes parallel oriented
(compounds1c′-3c′) produces, as just discussed for1b and
1b′, a polarization effect on phosphorus that results in a
significant change in the apical bond lengths. This is not so
dramatic as for1b and 1b′, because of the different
electronegative character of the CH3O equatorial substitutes,
and the bond length changes induced amounts among 0.024
and 0.067 Å, depending on the apical substitutes (see Figure
4).

Effect of an External Electric Field. The high sensitivity
to the polarization effects on the apical bonds, analyzed in
the previous section, suggested to us to investigate the
influence that an external electric field will produce on these
kinds of bonds. To this end, we have performed a series of
calculations on three pentacoordinated model systems and
in two model reactions in order to analyze the effects of an
external electric field on the geometries of the stationary point
(minima) and on the reactivity. We have considered the effect
of the external electric field in two different orientations,
namely along a line in the plane defined by the phosphorus
and the three equatorial substitutes and along the axis defined
by the phosphorus and the apical substitutes. In the first case
no substantial influence of the external electric field on the
structures of the pentacoordinated models has been observed,
but in the second case relevant effects have been found.
Therefore, the results presented in this section correspond
to the external electric field having the direction of the apical
axis only. Putting the apical axis in the X direction and the
origin of the coordinates at phosphorus, the external electric
field follows the positive values of the X axis, while negative
values means that the field direction was reversed. The results
are displayed in Figures 6 and 7.

Regarding the influence of the electric field in the bonding
and structural features, the first example we have considered

Figure 6. Dependence of the apical bond lengths on the intensity of an external electric field (F) for the pentacoordinated
phosphorus compounds 1b′ (a), 5 (b), and 6 (c).
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is the model1b′ (PO(OH)2(OH)2) discussed in the previous
section and having the two equatorial OH substitutes parallel
oriented (see Figure 4). We have pointed out that, in absence
of external electric field, both apical P‚‚‚O(H) bond lengths
are different, 1.695 and 1.910 Å, respectively, ford1 andd2,
but an external electric field produces important changes in
these apical bond lengths. Figure 6a shows these changes as
a function of the intensity of the external electric field. As
the strength ofF increases,d1 is enlarged andd2 is shortened
so that applying an electric field ofF ) 0.0111 au both apical
distances are equal, with a value of 1.769 Å. Figure 6a also
shows that upon reversing the direction of the field, the
opposite effect is observed, that is thed2 is enlarged while
d1 is shortened, and with electric field withF < -0.0030

au, this pentacoordinated model is not stable anymore and
dissociates in a process that involves a proton-transfer
producing H2O + H2PO4

-, as occurs in the process1b
discussed in a previous section.

The second model we have considered under the effects
of the electric field is P(CH3O)(HCOO)(HO)3 (compound
5, see Figure 6b). This model is neutral, having three HO
substitutes in an equatorial position, while the apical
substitutes are CH3O and HCOO. In the absence of an
external electric field the two PO bond lengths are different
(1.646 Å for P‚‚‚OCH3 and 1.785 Å for P‚‚‚OCHO) as
expected because, as pointed out above, the CH3O apical
substitute has a higher donor character. However, Figure
6b shows that the electric field produces a shortening of

Figure 7. Schematic potential energy profiles computed under an external electric field at different intensities. (a) Corresponds
to reaction 2 with F ) 0.0000 au (black line); F ) 0.0060 au (red line); and F ) -0.0020 au (green line). (b) Corresponds to
reaction 3 with F ) 0.0000 au (black line); F ) 0.0060 au (red line); and F ) -0.0060 au (blue line).
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the P‚‚‚O(CHO) bond length and a lengthening of the
P‚‚‚O(CH3) bond distance so that with an external electric
field of F ) 0.0107 au the two apical P‚‚‚O bond distances
become equal to 1.699 Å. Figure 6b also shows that with
fields with F > 0.0107 au P‚‚‚OCH3 becomes larger than
P‚‚‚OCHO, which means that the electric field changes the
relative strength of the two apical bonds.

The third model we have considered is PO(CH3O)(OCF3)-
(CH3)2 having the two CH3 as equatorial substitutes and
OCH3 and OCF3 as apical substitutes (compound6, Figure
6c). This model has been chosen because in the absence of
an external electric field, the pentacoordinated phosphorus
compound is not stable and dissociates into PO(CH3O)(CH3)2

and CF3O-. However, under a field ofF > 0.0060 au, this
pentacoordinated model is stable, being that the P‚‚‚O(CH3)
bond length is shorter than the P‚‚‚O(CF3) until F ) 0.0105
au, where both apical P‚‚‚O bond distances become equal
to 1.898 Å (see Figure 6c). WhenF increases beyond 0.0105
the P‚‚‚O(CH3) bond distance becomes larger than the
P‚‚‚O(CF3) bond length, inverting thus the relative strength
of the two apical bonds.

These three examples point outa net influence of an
external electric field on the bonding competence of the two
apical datiVe bonds on phosphorus.

With regard to the study of the effect ofF on the reactivity
we have considered the two following nucleophilic substitu-
tions:

These two reactions differ in the fact that in the second one
we have added a proton in order to have a neutral reaction.
The results are displayed in Figure 7. In both cases the
reaction begins with the formation of a prereactive hydrogen-
bonded complex, whereas in the exit channel a hydrogen-
bonded complex is also formed before the release of the
products. As we are mainly interested in what concerns the
pentacoordination at phosphorus, we will consider these
hydrogen-bonded complexes as reactive products of reactions
2 and 3. Moreover, as for reactions1b-4b discussed above,
these reactions involve, in the entry and exit channels, a
proton transfer which is linked to the formation (breaking)
of the pentacoordination at phosphorus. For reaction 2, Figure
7a shows that in the absence of an external electric field
(black line), the pentacoordinated phosphorus intermediate
7 is computed to be 17.2 kcal‚mol-1 higher in energy than
the prereactive complex. Its formation (viaTS1) requires
the surmounting of an energy barrier of 34.3 kcal‚mol-1,
whereas the energy barrier for the exit channel (TS2) is only
1.3 kcal‚mol-1, that is,TS1 is clearly the limiting step of
the reaction. Figure 7a shows also that the reaction profile
is significantly altered under an external electric field. Thus,
with a F ) 0.0060 au (red line), the pentacoordinated
intermediate7 is destabilized by about 9 kcal‚mol-1, and,
more interestingly, the computed energy barrier for the exit

channel (TS2) is the same as that of the back reaction (TS1)
to the reactants. On the other side, with an external field of
F ) -0.0020 au (green line), the pentacoordinated phos-
phorus intermediate is not stable anymore, and the reaction
occurs in a single step. A similar behavior is observed for
the neutral reaction 3 (Figure 7b). In the absence of an ex-
ternal electric field, the reaction occurs through the penta-
coordinated intermediate6 (black line) and is slightly
destabilized when aF ) 0.0060 au is applied (red line).
However, with anF ) -0.0060 au (blue line) the pentaco-
ordinated intermediate is not stable anymore, and the reaction
occurs in a single step. These two examples point out that
the external electric field affects the stability of pentacoor-
dinated phosphorus compounds and it may also affect the
reactiVity of nucleophilic substitution at phosphorus.

These results may be of relevance in biological reactions
involving pentacoordinated phosphorus, where the electric
field originated by the folded protein could influence the
catalytic process. In fact, it has been pointed out very recently
the role of the electric field in the active site of the aldose
reductase76 and how the electric field may control the
selectivity in heme enzymes.77

Triphenylphosphonium Ylide Derivatives. In an attempt
to get a deeper insight in the hypervalence at phosphorus
we have extended our investigation to the study on the
bonding features of three neutral triphenylphosphonium ylide
derivatives (8, Scheme 2) having pentacoordination at
phosphorus and for which crystallographic X-ray data are
available.78,79

These compounds have a trigonal bipyramid structure and
are interesting for the purposes of this investigation because
a change in the substitute R (R) CH3 (8a), H (8b), and CN
(8c)), which is not directly bonded to phosphorus, results in
large changes in the P‚‚‚O bond distance (2.00 Å for8a;
2.21 Å for 8b; and 2.36 Å for8c (X-ray data)). The X-ray
data first suggested that8a and8b form the PO bond but8c
does not. Further analysis of the crystallographic data,
together with results from31P and13C NMR spectra, had
lead 8a, 8b, and8c to be viewed as resonance hybrids of
structures A, B, and C (Scheme 3).79,80TheδP andδC NMR
spectra have been also collected in Table 4.8ashows a large
δP (among-16.0 and-22.1 ppm, see also Table 4) that
suggested a large contribution of the P-O bonding of the
resonance structure A (Scheme 3). On the other hand,8c
has aδP among-2.8 and-9.0 and has been related to the
resonance structures B and C.

CH3OH + POO(OH)(OCHO)- f

POO(OH)(CH3O) - + HCOOH (2)

CH3OH + PO(OH)2(OCHO)f

PO(OH)2(CH3O) + HCOOH (3)

Scheme 2 a

a 8a: R ) CH3; 8b: R ) H; 8c: R ) CN.
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In the present work we have fully optimized and charac-
terized as true minima the structures8a, 8b, and 8c, and
their most significant geometrical parameters are displayed
in Figure 8. It is gratifying to observe that the computed
P‚‚‚O bond distances compare well with the X-ray values
for 8a and8b (2.067 Å and 2.213 Å, respectively), whereas
for 8c our computed P‚‚‚O bond length (2.239 Å) is 0.121
Å shorter than the X-ray value. Moreover, the remaining
geometrical parameters compare also quite well with the
experimental results. At this point, it should be taken into
account that the calculated values should be compared with
gas-phase values, while the X-ray data from the literature
include packing effects that are shown to have an important
role.5,71 Besides the absolute values, the computed geo-
metrical parameters follow the same trends with respect to
the P‚‚‚O bond lengths (8a< 8b < 8c). The bonding features
have been analyzed, as above, employing the AIM and NBO
methods, and the most significant results are displayed in
the Supporting Information (Table S5). For each of the three

triphenylphisphonium ylide considered (8a, 8b, and8c), we
have found a bcp between the phosphorus and oxygen atoms
having the same topological features as those described in
the previous sections for the P-Oapical bonds in the model
systems, that is, the values of the density and the Laplacian
of the density are small and positive, indicating that there is
a PO bond, that can be classified as datiVe. Moreover, and
as above, the NBO analysis indicates that the phosphorus
has a formal sp2 hybridization scheme. On the other hand,
the large differences in the P‚‚‚O bond distances observed
for the three compounds, and originated by the different
substitutes R, can be mainly associated with the different
ability to delocalize theπ system through the seven-member
ring. Thus,8c with R ) CN has a certain amount ofπ
character between C and N, which prevents, in part, the
delocalization of theπ system through the C9-C10 bond.
This results in a shorter CO bond distance with less ability
to transfer charge to phosphorus, and consequently the
P‚‚‚O bond distance is larger. The opposite case8a, with R
) CH3, implies a different delocalization of theπ system
through the seven-member ring resulting in a larger CO bond
distance with more ability to transfer charge from oxygen
to phosphorus and consequently with a smaller P‚‚‚O bond
length. In any case, these results show that small changes in
the electronic features produce large changes in the P‚‚‚O
bonding.

For the sake of completeness we have also computed the
31P and13C NMR spectra of8a, 8b, and8c, and the results
have been collected in Table 4 along with the experimental
data. The computed NMR spectra correspond to gas-phase

Scheme 3

Table 4. Experimental and Computed 31P and 13C NMR
Spectra (δ in ppm) for Compounds 8a, 8b, and 8ca

experimental
values69,70

this work
(gas phase)b

δP (CDCl3) δC (CDCl3) δC

compd rt -60 ˚C
δP (solid)

rt C3 C10 δP C3 C10

8a -17.9 -16.0 -22.1 170.1 87.0 -21.8 179.7 84.2

8b -3.6 -1.8 -11.1 173.6 75.3 -16.2 180.2 77.8

8c +7.8 +9.0 +2.8 177.5 49.4 -6.35 181.2 61.0
a Atom numbering is according to Scheme 2. b δ values are relative

to H3PO4 for P and to TMS for C.

Figure 8. Selected geometrical parameters (in Å) for the optimized structures 8a, 8b, and 8c. Atom numbering is according to
Scheme 2.
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optimized structures and show the same tendencies as the
experimental values, that is largerδP for 8a than for8b and
for 8c (-21.8, -16.2, and -6.35 ppm, respectively).
Moreover, these results agree with the electronic features of
the PrO dative bond. The stronger the PrO bond is, the
higher the charge transfer associated with the dative bond
and the shorter the corresponding bond length, which results
in a higher shielding on P as reflected in the NMR spectra.
It appears thus that the31P NMR spectra is a direct measure
of the strength of dative bonding at phosphorus, and changes
of its value in different media (as for instance in solid phase
or in CDCl3 for 8a, 8b, and8c, see refs 79 and 80 and also
Table 4) would reflect differences in the bond length and
strength. This also agrees with the linear correlation observed
betweenδP and the X-ray PrO bond length as reported by
Naya and Nitta.79

Conclusions
The results of the present investigation lead us to emphasize
the following points: (1) All the pentacoordinated phospho-
rus compounds considered in this work have a trigonal
bipyramid structure where the apical bonds show great
variability. The topological and NBO analysis of the corre-
sponding wave function indicates that these apical bonds can
be classified as dative. These compounds are charge-transfer
complexes, where the phosphorus has a formal sp2 hybrid-
ization, which is compatible with the diagram based on a
three-center four-electron (3c4e) model. (2) The features of
the apical bonds depend strongly on the nature of the apical
and equatorial substitutes. Compounds having apical sub-
stitutes with higher donor character are more stable and
possess shorter apical bonds. On the other hand, the higher
the donor character of the equatorial substitutes, the larger
the apical bond length and the destabilization effect in
pentacoordinated phosphorus compounds. (3) Polarization
and electric field effects play an important role in the dative
bonds of pentacoordinated phosphorus compounds, with
consequences in both the geometry and the stability. These
effects may change the competition between different apical
substitutes, and they can even alter the reactivity of nucleo-
philic substitution at phosphorus. These effects may be of
great relevance in enzymatic reactions, where the electric
field originated by the folded protein could influence the
catalytic process. (4) With regard to the three triphenylphos-
phonium ylide compounds considered (8a, 8b, and8c), our
results predict quite well the experimental (X-ray) geo-
metrical data from the literature and show that in all cases
there is a dative bond between the phosphorus and oxygen
atoms, whose strength is correlated to the NMR displacement
at P.
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Abstract: In this paper we present a parallel adaptation of a highly efficient coupled-cluster

algorithm for calculating coupled-cluster singles and doubles (CCSD) and coupled-cluster singles

and doubles augmented by a perturbative treatment of triple excitations (CCSD(T)) energies,

gradients, and, for the first time, analytic second derivatives. A minimal-effort strategy is outlined

that leads to an amplitude-replicated, communication-minimized implementation by parallelizing

the time-determining steps for CCSD and CCSD(T). The resulting algorithm is aimed at affordable

cluster architectures consisting of compute nodes with sufficient memory and local disk space

and that are connected by standard communication networks like Gigabit Ethernet. While this

scheme has disadvantages in the limit of very large numbers of compute nodes, it proves to be

an efficient way of reducing the overall computational time for large-scale coupled-cluster

calculations. In this way, CCSD(T) calculations of molecular properties such as vibrational

frequencies or NMR-chemical shifts for systems with more than 1000 basis functions are feasible.

A thorough analysis of the time-determining steps for CCSD and CCSD(T) energies, gradients,

and second derivatives is carried out. Benchmark calculations are presented, proving that the

parallelization of these steps is sufficient to obtain an efficient parallel scheme. This also includes

the calculation of parallel CCSD energies and gradients using unrestricted (UHF) and restricted

open-shell (ROHF) Hartree-Fock references, parallel UHF-CCSD(T) energies and gradients,

parallel ROHF-CCSD(T) energies as well as parallel equation-of-motion CCSD energies and

gradients for closed- and open-shell references. First applications to the calculation of the NMR

chemical shifts of benzene using large basis sets and to the calculation of the equilibrium

geometry of ferrocene as well as energy calculations with more than 1300 basis functions

demonstrate the efficiency of the implementation.

1. Introduction

In electronic structure theory coupled-cluster (CC) methods
have become a standard tool for high accuracy calcula-

tions.1-5 With the exception of some difficult cases like
multireference systems or cases of reference orbital instabili-
ties, methods from the CC hierarchy represent robust black-
box approaches providing increasing accuracy and a fast,
systematic convergence to the full configuration-interaction
(FCI) result. However, application of CC methods to larger
chemical problems is limited by the rapidly increasing
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computational effort with growing number of electrons and
basis functions.

A detailed analysis reveals that for CC methods like the
coupled-cluster singles and doubles (CCSD)6 and the coupled-
cluster singles and double scheme augmented by a pertur-
bative treatment of triple excitations (CCSD(T))7 the limiting
factor is CPU time and not storage requirements. IfN is
chosen as a measure of the system size, storage requirements
for two-electron integrals, coupled-cluster amplitudes, and
intermediates scale asN4. In contrast to that, the operation
count scales asN6 for CCSD and N7 for CCSD(T).
Nowadays, efficient implementations allow calculations at
the CCSD(T) level of theory with up to 800 basis
functions.8-11

While for almost all methods numerous efficient parallel
algorithms have been developed, the number of parallel
implementations of CC methods has only increased in recent
years.12-19 Of note are the highly sophisticated algorithm for
parallel calculation of CCSD(T) energies presented by Olson
et al.11 (within the program package GAMESS18) and an
implementation of CCSD energies by Janowski et al.20

(within the program package PQS19). In contrast to the
algorithm presented in this work, the parallel implementation
of CCSD(T) energies by Olson et al. is tailored to multi-
processor and/or multicore nodes connected by a dedicated
communication network and based on the Distributed Data
Interface (DDI/3).11,21 And while Janowski et al. present
CCSD energy calculations with more than 1500 basis
functions on more than 30 compute nodes, their approach is
based on the Array Files (AF)20,22 scheme. We will focus
on an ansatz which works without an additional layer of
complexity provided by specialized libraries like DDI/3 or
AF. The presented scheme is based on the message passing
interface (MPI),23 and all nonparallel steps run redundantly
on every available processor at the same time.

To the best of our knowledge, however, no CC code
capable of calculating general second-order molecular prop-
erties at the CC level using analytical derivatives has been
adapted for parallel architectures. The main reason for this
is that the mathematical structure of the CC equations makes
an efficient fully parallel implementation or reimplementation
demanding and time-consuming. In this paper we demon-
strate an alternative approach, namely, the adaptation of an
efficient serial algorithm to parallel environments.

The employed strategy is presented in a stepwise manner
leading to an algorithm with parallelized routines for the
time-determining steps in the CCSD and CCSD(T) energy,
gradient, and analytical second-derivative calculations. We
present benchmarks of large-scale CC applications using the
Mainz-Austin-Budapest version of the ACES II program
package24 (ACES II MAB) modified in this way. A detailed
investigation of the time-determining steps in CCSD and
CCSD(T) calculations and the reduction of the overall
execution time in the parallel algorithm is carried out.

2. Parallelization Strategy for CC Energies
and Derivatives
A common approach for the parallelization of CC algorithms
is to minimize storage requirements while aiming at constant

(but in practice high) total communication by distributing
parts of integrals, amplitudes, and intermediates and com-
municating the pieces as needed by other processors. While
this approach guarantees a proper scaling of the algorithm
in the limit of a large number of processors,16,25 high-speed
and expensive network connections are required. Further-
more, the structure of such an algorithm as well as the
communication overhead, arising through dead times in
which a node awaits data, may shift the crossover point with
respect to efficient serial algorithms to a large numbers of
nodes.

Following a different route, we apply a replicated storage
scheme in order to minimize communication. Most of the
quantities needed in the CC iterations are stored completely
on every node in order to avoid communication of interme-
diate quantities. In contrast to the algorithm outlined by Olson
et al.,11 the work presented here is tailored to cluster
architectures with moderate hardware specifications, assum-
ing relatively slow interconnect structures like Gigabit
Ethernet. Furthermore, it is assumed that memory is available
to store the full set of T1 and T2 amplitudes locally on every
node in fast memory and on hard disk. In this way,
communication is minimized as only the CC amplitudes have
to be communicated. The storage of the amplitudes rarely
becomes a bottleneck: If one assumes a molecule with 20
occupied and 600 virtual spin orbitals, which would cor-
respond to a basis set of better than quadruple-ú quality, then
the number of T2 amplitudes, which scales asocc2Vrt2, 26

would be of the order of a few hundred millions, which
roughly corresponds to 1.5 GB of memory, if no symmetry
is used.27

In the actual algorithm, parts of intermediates or integrals
are contracted with the amplitudes on different nodes to give
parts of the resulting quantity. In a final step, the amplitudes
are updated and broadcast to all nodes. While allowing for
distributed contractions during the CC iterations at minimal
communication, this strategy has two drawbacks. Primarily,
it does not allow for optimal scaling in the limit of a large
number of processors as the distribution costs scale linearly
with the size of the distributed entity and the number of
processors. The exact scaling behavior for the communication
depends on the employed communication hardware and the
used algorithm. Furthermore, it does not reduce the storage
requirements for the replicated quantities like the T2 ampli-
tudes or the molecular orbital (MO) integrals excluding the
four-virtual index integrals. These are treated in partial atomic
orbital (AO) algorithms which eliminate the need for a full
transformation of the two-electron integrals and only require
storage of the AO integrals. The needed MO integrals are
calculated once in a semiparallel way and then are fully
stored on each node (see subsections 2.2 and 2.3). It is
straightforward to calculate and store AO integrals, which
are usually the largest quantity in terms of disk space in
modern CC algorithms, in a distributed manner. Together
with the increased availability of large and cheap directly
attached disk space the distributed storage of AO integrals
makes it obsolete to recalculate or approximate these in every
new step. At the same time, the efficiency of this algorithm
is improving for increasing example size: The time-
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determining steps can be more efficiently parallelized (see
3). However, calculations that are not feasible due to memory
or disk space limitations (for the MO integrals) will also
not be feasible when multiple processors are used.

For methods like CCSD or CCSD(T), communication
costs associated with the replication of T2-like quantities are
usually at least 2 orders of magnitude smaller than the CPU
time required for their computation. For CCSD(T), the
scaling of CPU time isN7 (occ3Vrt4), while storage and
communication costs grow asocc2Vrt2 per compute node.
Thus, the distribution of the time-determining steps to a
number of processors in the way described above leads to a
major reduction of overall walltime, especially when large
examples are considered. A detailed discussion and examples
for the different aspects of this parallelization strategy will
be given in the next sections.

As the basic outline of the formalism used here and the
common algorithms that are the starting point for our current
work have been described in several publications,7,28-32 we
will not reiterate them but rather give details only for the
steps modified in our approach.

In subsection 2.1 we will describe the parallelization of
the CCSD(T) perturbative triples part for energies, gradients,
and second derivatives starting from an implementation28-30

that proves to be an ideal structure for the adaptation to
parallel architectures.

In subsection 2.2 we carry out an analysis of the time-
determining steps in CCSD energy, gradient, and second
derivative calculations and describe the modification of the
AO-based calculation of the leading term (the so-called
particle-particle ladder term that includes contraction over
two virtual indices).

In subsection 2.3 further issues for the optimization of the
parallel code are described concerning the evaluation of
two-electron integrals, the Hartee-Fock self-consistent-field
(HF-SCF) procedure, and the integral transformation. For
all test calculations reported in these sections correlation-
consistent and correlation-consistent core-valence Dunning
basis sets33-35 have been used throughout.

Finally (section 3), we present applications of the new
algorithm with a detailed investigation of the scaling of
overall time with the number of processors.

2.1. Parallel Algorithm for the Perturbative Triples
Contributions to CCSD(T) Energies, Gradients, and

Second Derivatives.The first step in the parallelization of
the CCSD(T) scheme is to realize that almost all large
CCSD(T) calculations are dominated by the calculation of
the perturbative triples contribution. In Table 1 the timings
for several standard serial CCSD(T) calculations are sum-
marized. While the time-determining step for CCSD scales
asocc2Vrt4, the computational bottleneck of the perturbative
triples correction scales asocc3Vrt4. Thus, in comparison to
CCSD the time spent for the (T)-correction more rapidly
increases with the number of electrons, and this renders the
computation of the perturbative triples correction the time-
determining step in CCSD(T) calculations.

Our approach to parallelize the triples correction starts
from the energy expressions7

whereE[4] andE[5] are energy contributions in fourth- and
fifth-order perturbation theory, respectively.Dijk

abc denotes
the inverse orbital-energy denominator. As is the usual con-
vention, i,j,k, ... denotes occupied anda,b,c, ... virtual spin
orbitals. The perturbative-triple amplitudestijk

abc are defined
as

with P(x|yz) being the cyclic permutation operator (P(x|yz)
f(x,y,z) ) f(x,y,z) + f(y,z,x) + f(z,x,y)), ti

a andtij
ab the CCSD

amplitudes, and〈bc||ek〉 the antisymmetrized two-electron
integrals. The basic scheme utilized in the ACES II MAB
algorithm for the formation of the T3 amplitudes is an outer
loop over an index triplei,j,k of the tijk

abc amplitudes. For
energy calculations, for example, blocks ofa,b,c index triples
are calculated within the loop one at a time and immediately
used to form theE(4) andE(5) energy contributions. In this
way, storage of the full triples amplitudes is circumvented,
as has also been reported on many other occasions in the
literature.12,37,38

If the T1 and T2 amplitudes and the corresponding integrals
are fully or at least partially locally available on all nodes,
each node can independently forma,b,c energy contributions.
Only a single number per node, namely the summed up
energy contributions, has to be communicated. In a final step,
the energy contributions from thei,j,k blocks are summed
up to give the total energy correction. In this way, the
parallelization of the (T) energy contributions can be
achieved in a straightforward fashion.

For CCSD(T) gradients, Watts et al.38 describe an algo-
rithm which following an idea of Lee and Rendell39 avoids
recomputation of amplitudes due to the use of perturbed
canonical orbitals. Here, the outer loop runs again over the
index triplesi,j,k, and after the formation of an a,b,c block
of T3 amplitudes not only the energy increment but also the

Table 1. Timings for the Perturbative Triples Step in
CCSD(T) Energies Relative to the Total Walltime of the CC
Part

molecule basis set
no. of

electrons

no. of
basis

functions

% of (T)
in

CCSD(T)

H2O cc-pCVTZ 10 115 13
H2O cc-pCVQZ 10 144 13
H2O cc-pCV5Z 10 218 13
Cl2 cc-pCVTZ 34 118 52
Cl2 cc-pCVQZ 34 218 52
benzene cc-pCVDZ 42 138 51
benzene cc-pCVTZ 42 354 57
hexachlorobenzene cc-pVDZ 168 192 60

E[4] )
1

36
∑
ijk

∑
abc

tijk
abc Dijk

abc tijk
abc (1)

E[5] )
1

4
∑
ijk

∑
abc

〈jk||bc〉ti
a tijk

abc (2)

Dijk
abc tijk

abc ) P(k|ij )P(a|bc)∑
e

tij
ae〈bc||ek〉 -

P(i|jk)P(c|ab)∑
m

tim
ab〈mc||jk〉 (3)
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contributions to the unperturbed effective one-particle density
matrices, the two-particle density matrices, and the contribu-
tions to the inhomogeneous terms of theΛ equations have
to be calculated from the available T3 block. In CCSD(T)
second derivative calculations,29,31 the same loop structure
is used to construct the perturbed triple amplitues∂tijk

abc/∂x
and ∂t̃ijk

abc/∂x40 and the corresponding contributions to the
perturbed density matrices as well as to the perturbedΛ
equations for one perturbation at a time. Such a strategy is
only possible when using an asymmetric expression for the
second derivatives.29,31 This issue renders the asymmetric
strategy the preferred choice over an alternative symmetric
approach which requires the simultaneous availability of all
perturbed amplitudes. However, while for energy calculations
only one double-precision quantity needs to be com-
municated, for gradients and second derivatives the corre-
sponding contributions to the two-particle density matrices
must be exchanged and summed as well.

To illustrate the efficiency of this scheme, energy calcula-
tions, geometry optimizations, and calculations of NMR
chemical shifts have been carried out for the benzene
molecule using Dunning’s correlation consistent core-valence
basis sets.41 The timings for the perturbative triples part of
the algorithm are displayed in Table 2.42

The timings for the perturbative energy correction in the
CCSD(T) algorithm scale almost perfectly up to 16 proces-
sors, even for the smallest basis set. It should be noted that
the communication time required for the distribution of
intermediate quantities calculated in thea,b,c loop of the
perturbative triples is typically of the order of at most a few
minutes, using Gigabit Ethernet interconnection. This is even
the case for the largest examples and the largest numbers of
nodes tested so far. In contrast to this, the time required for
the parallel computation of the triples quantities themselves
is usually of the order of hours for these examples.

In this way, using a simple scheme for the adaptation of

the serial code to cluster architectures, the overall time for
the most CPU-time intensive steps in CCSD(T) calculations
can be scaled down efficiently. However, the required effort
for the underlying CCSD calculation that precedes the
calculation of the perturbative triples has not been discussed
so far but now becomes the dominant step in the overall
execution time. The next section focuses on this issue.

2.2. Analysis and Parallelization of CCSD Energy,
Gradient, and Second-Derivative Calculations.From the
previous section it is obvious that the straightforward
parallelization of the (T) step in large-scale CCSD(T)
calculations allows a significant reduction of the overall
execution time up to a certain point. Increasing the number
of nodes further, however, does not lead to an additional
gain in execution time, if the effort for the underlying serial
CCSD calculation exceeds the time for the parallel calcula-
tion of the perturbative triples. Thus, the next meaningful
step in the parallelization of the CCSD(T) method is to
identify and to parallelize bottlenecks in the CCSD algorithm.
The time-determining steps in a CCSD energy calculation
are the so-called particle-particle ladder terms that scale as
occ2Vrt4 32,43

where the intermediate

is used.
It should be noted that for CC energy and derivative

calculations terms including〈ab||cd〉 integrals or correspond-
ing integral derivatives can, in general, be identified as the
contributions with the highest scaling. For large basis sets
the quartic dependence on the number of virtual indices will
usually render this contraction expensive in terms of
computational time.

One problem of the formulation in eq 4 is that the
molecular-orbital integrals always represent a storage bottle-
neck, due to their lack of sparsity. As a consequence, the
common practice in modern CC programs is an AO integral-
driven algorithm in which the corresponding amplitudes are
first partially transformed to the AO basis in anN5 procedure

and then contracted with the AO integrals driven by the order
in which integrals are retrieved from disk:

Afterwards, the resulting intermediate will be back trans-
formed and processed in the MO basis44-50 as follows:

Olson et al.11 give a detailed discussion on integral storage
requirements and typical file size dimension.

Table 2. Timings for the Parallel Perturbative Triples Step
in CCSD(T) Energy Calculations, Geometry Optimizations
(One Iteration), and the Calculation of NMR Chemical
Shifts as Analytical Second Derivatives for the Benzene
Moleculea

number of nodes

1 2 4 8 16

cc-pCVDZ (138)
energy 75 40 19 9 5
geometry 251 126 63 31 16
NMR shieldings 2936 1452 727 363 192

cc-pCVTZ (342)
energy 2163 1081 540 269 146
geometry 6594 3241 1619 809 426
NMR shieldings 80779 40285 20171 10527 5171

cc-pCVQZ (684)
energy 29019 14514 7225 3592 1758
geometry 82171 40999 20425 10207 5489

cc-pCV5Z (1200)
energy 238882 119469 59764 29895 15184

a Walltime in s. The number of basis functions is given in
parentheses.

tij
ab Dij
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cµecνfτij
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The use of partial AO algorithms has the advantage that
only the more sparse AO integrals need to be stored at the
expense of an additional transformation. While the operation
count of the time-determining step scales asocc2ao4 in this
scheme, in practice the reduced number of AO integrals also
leads to a significantly reduced I/O and an overall saving of
walltime. Thus, in almost all relevant cases the AO based
algorithm outperforms the straightforward MO based scheme.
Realizing that parallelizing this single contribution will lead
to a major reduction of overall time in each CCSD iteration,
we have chosen this AO based term as a starting point to
improve our parallel CCSD(T) code.

The basic loop structure for which the power of multiple
processors can be used effectively is an outer loop over
batches of AO integrals that are read from disk and
contracted with all matching T2 amplitudes in the AO basis.
After the contraction has been carried out, the resultingZij

ab

intermediate is communicated, and the CCSD iteration is
continued.

It should be noted that the communication required after
parts of the corresponding intermediate have been formed
on all nodes scales at most asocc2Vrt2 per compute node. It
is expected that this step can be parallelized efficiently
without running into communication bottlenecks.

Table 3 shows the timings of the CCSD iterations for the
benzene molecule, where the AO ladder term has been
parallelized in the described fashion.

As can be seen in the first column, the calculation of the
AO-based particle-particle ladder term dominates the time
for one iteration, even for the smallest examples by more
than 60%. Furthermore, the parallelization of this term in
batches of AO integrals results in an almost perfect reduction
of the walltime for this contribution up to 16 processors and,
thus, to a significant reduction of the overall time per
iteration, especially for larger examples.

For the calculation of analytic gradients terms analogous
to those in energy calculations appear in the CCSDΛ
equations:32

Within the ACES II MAB program package this term is
calculated using the same AO integral-driven scheme. Thus,
the time-determiningN6 step in the gradient calculations can
be parallelized in the same way as the corresponding term
in the energy calculation.

For second derivative calculations, the contributions that
have to be considered occur in the equations for the perturbed
cluster and perturbedΛ amplitudes:

By parallelizing these contributions in the AO based scheme,
the overall computational cost of the most time-consuming
steps in the CCSD gradient and analytical second derivative
calculations can be reduced as well. Due to the dominance
of these steps compared to the overall time per CCSD
iteration this simple strategy improves the overall CCSD time
significantly if multiple processors are used.

Table 4 summarizes the timings for the corresponding
modules that include the steps described above for calcula-
tions of NMR chemical shifts for the benzene molecule.

From the last columns of Tables 2 and 4 it becomes clear
that for this example the overall time required for the CCSD-
and CCSD(T)-derivative equations is of the same order as
the time for the evaluation of the perturbative triples part, if
16 processors are used. Thus, the CCSD part of the
calculation will still dominate the overall time for CCSD(T)
derivative calculations if more than 16 processors are used.
This is mainly due to contributions that have not been
parallelized, which include terms of lower scaling, integral
derivative transformations, etc.

So far only the particle-particle ladder terms for the
CCSD,Λ, perturbed amplitudes and perturbedΛ equations
are parallelized.

To further improve the algorithm, one could utilize parallel
matrix multiplication routines for CCSD contributions that
scale asocc3Vrt3. In addition, for the special case of analytic
second derivatives, one could also use a coarse-grained
parallelization scheme51 on top of the one suggested here.

Table 3. Timings per CCSD Iteration in Comparison to
the Particle-Particle Ladder Term for the Benzene
Moleculea

number of nodes

1 2 4 8 16

cc-pCVDZ (138)
time per CCSD iteration 5.2 3.9 3.0 2.5 2.4
time for AO ladder term 3.4 2.0 1.1 0.6 0.5

cc-pCVTZ (342)
time per CCSD iteration 135 79 52 39 33
time for AO ladder term 113 57 31 16 9

cc-pCVQZ (684)
time per CCSD iteration 1902 1027 584 365 257
time for AO ladder term 1761 885 445 226 115

a Walltime in s. The number of basis functions is given in
parentheses.

Table 4. Timings for the Solution of the Lambda
Equations and the Solution of the Perturbed Amplitude and
Lambda Equations for the Benzene Moleculea

number of nodes

1 2 4 8 16

Lambda Equations
cc-pCVDZ 65 48 40 35 34
cc-pCVTZ 1819 1147 828 653 603
cc-pCVQZ 25166 14808 9510 6887 5854

Perturbed Amplitude and Lambda Equations
cc-pCVDZ 607 459 390 345 331
cc-pCVTZ 18526 12190 9255 7972 6022

a Walltime in s.
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Namely, one could distribute the different perturbations that
are calculated independently, for exampleBx, By, andBz for
NMR chemical shifts or geometric perturbations in the case
of harmonic frequencies, to different processors. While this
has not been carried out in the approach presented here, it is
a straightforward addition to any code that could further help
to improve the scaling of the algorithm with the number of
processors.

However, the crossover point from which the preceding
CCSD calculation will dominate over the CCSD(T) calcula-
tion time is pushed to a larger number of processors for larger
examples. For larger molecules with medium-sized basis sets
this crossover point should shift to 32 or even 64 processors,
so that large-scale cluster architectures could be used to carry
out calculations within days that would take months on a
single processor.

2.3. Further Optimization Issues. The scheme for
parallelizing the AO ladder terms described in subsection
2.2 requires only equally distributed integrals to be present
on the different compute nodes. As a consequence, the
evaluation of the integrals is carried out in parallel and in
turn used in the parallel framework of the HF-SCF procedure
and the integral transformation. Each node calculates and
stores only a part of the integrals, and thus during the HF-
SCF procedure only an incomplete Fock-matrix is built on
each node, which is then exchanged between the compute
nodes. The total Fock matrix is simply the sum of these
incomplete matrices. The rest of the algorithm is unaltered.
For the integral transformation all AO integrals are read in
only once and communicated in the form of an intermediate
array. After transformation of the MO integrals with two
and three virtual indices each node stores all calculated MO
integrals locally. Another non-negligible part of the derivative
calculation is the evaluation of the integral derivatives which
can be parallelized in an analogous manner. While this has
not been done in the work presented here, it is the focus of
future work, among other optimization issues.

The timings (in seconds) for parallel integral evaluation,
HF-SCF, and integral transformation for the benzene mol-

ecule are shown in Table 5. This simple scheme results not
only in a reduced storage requirement per node but also in
a reduction of the overall time for the integral evaluation,
transformation, and HF-SCF. It should be noted, that for
some cases, even superlinear scaling of the evaluation of
the two-electron integrals can be observed. This is due to
automatic buffering schemes in the operating system that
allow for a more efficient I/O if certain buffer sizes are
reached and has also been reported by other groups.52

An important issue in parallel implementations is to
avoid load balancing problems. In the work presented here,
HF-SCF, the integral transformation, and any CCSD-like
equations are automatically balanced by the local calcula-
tion and storage of equally sized amounts of two-electron
integrals at the beginning of the calculation. The remaining
steps in the calculation of the perturbative triples are balanced
on average by the large number of these contributions. This
applies for the calculation of energies, gradients, and any
second-order properties. In practice, even multiprocessor
systems do not show balancing problems since the load is
kept equal on every processor. For the actual implementation
we assume that dedicated nodes are available. However, load
balancing problems will arise if heterogeneous resources are
used or if compute nodes have different loads due to other
calculations. This issue will have to be addressed in further
developments of the current algorithm.

3. Results and Discussion
In this section we focus on the overall performance of the
scheme presented here and the practicability for the usage
on typical cluster architectures. The results of two applica-
tions are presented that outline typical problems in quan-
tum chemistry for which high level ab initio methods are
necessary but extremely time-consuming unless parallel
implementations, like the one presented here, are applied.

Nowadays more than 300 GB of disk space and 8 GB of
random access memory (RAM) are readily available even
on single cluster nodes within medium sized computer
clusters, so it is not foreseeable that memory or storage will
present a bottleneck for larger calculations. As has been
stressed before, only serial calculation times of the order of
months or years will render large-scale CCSD(T) calculations
infeasible. While a parallel implementation cannot combat
the steep scaling of high-level CC methods, the power of
parallel computer architectures can help to stretch the range
of applicability far beyond what it has been in recent years.

In Table 6 the results of some representative benchmark
calculations for energies and gradients are summarized. The
timings for CCSD(T) energy calculations for benzene and
cyclohexene and the timings of one step of the geometry
optimization of the adamantyl cation (C10H15

+) are given.
For the high-symmetry case benzene in a hextuple-zeta

basis set the serial energy calculation would take about 2
weeks and is reduced to less than a day using 16 processors.
From Table 6 it also becomes obvious that the number of
basis functions is not the only factor when considering the
size of a system but also symmetry and the distribution of
orbitals among the irreducible representations as well as the
ratio of occupied to virtual orbitals.

Table 5. Timings for the Calculation of Two-Electron
Integrals, the HF-SCF, and the Integral Transformation for
the Benzene Moleculea

number of nodes

1 2 4 8 16

cc-pCVDZ (138)
integral evaluation 8.5 4.6 2.2 1.1 0.7
HF-SCF 1.8 1.1 0.6 0.4 0.3
integral transformation 1.8 1.4 1.3 1.1 1.3

cc-pCVTZ (342)
integral evaluation 340 167 90 45 24
HF-SCF 57 30 16 9 5
integral transformation 61 37 29 23 21

cc-pCVQZ (684)
integral evaluation 19379 10012 4906 2518 1505
HF-SCF 1009 453 225 122 67
integral transformation 1096 601 399 267 233

a Walltime in s. The number of basis functions is given in
parentheses.
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Figures 1 and 2 give a more detailed view on the different
steps required for two smaller CCSD(T) calculations, namely
the gradient for one step of a geometry optimization and for
the calculation of NMR chemical shifts also for the benzene
molecule.

For the gradient calculation, which takes about 47 h on a
single processor, it can be seen that the calculation of the
perturbative triples contribution takes only about half of the
overall time of the optimization step. Using the current
algorithm it is possible to scale down this contribution and
also the calculation of the two-electron integrals, the CCSD,
andΛ equations as well as the integral transformation and
the contributions to the density matrices. Using 16 processors
the overall time is reduced to less than 10 h. At this point
steps dominate the overall time that have not been considered
for parallelization in the algorithm, so that the usage of larger
numbers of nodes would not yield significant further
speedups.

The calculation of the NMR chemical shifts with a larger
basis set shows a different profile. Here the perturbative
triples contributions to the second derivatives clearly domi-
nate compared to the other steps, such as the SCF or CCSD
calculations. Using 16 processors the overall time of 30 h
can be reduced to less than 5 h. After this point, the
remaining steps in the perturbed CCSD equations that have
not been parallelized dominate the overall calculation time.

Table 6. Overall Timings for the CCSD(T) Energy
Calculations of Benzene and Cyclohexene and for One
Step of the Geometry Optimization of the Adamantyl
Cation

molecule
comput.
symm basis set

no. of
basis

functions
no. of
nodes

execution
time [h]

benzenea D2h cc-pV5Z 876 16 4
benzenea D2h cc-pV6Z 1386 16 21
cyclohexenea,b C2 aug-cc-pVQZ 940 16 40
adamantyl

cation
Cs cc-pVTZ 510 9 90

a Energies (frozen core) for benzene cc-pV5Z, cc-pV6Z, and
cyclohexene are -231.8916163, -231.8987752, and -234.2797258
Hartree. b Carried out at the fc-MP2/cc-pVTZ geometry.

Figure 1. Composition of the overall walltime for one step in
the geometry optimization of the benzene molecule at the
CCSD(T)/cc-pCVQZ level of theory (684 basis functions).

Figure 2. Composition of the overall walltime for the calcula-
tion of the NMR chemical shifts of the benzene molecule at
the CCSD(T)/cc-pCVTZ level of theory (342 basis functions).

Figure 3. Parallel scaling of CCSD(T) energy calculations
for the benzene molecule using different basis sets.

Figure 4. Parallel scaling of CCSD(T) first and second
analytical energy derivative calculations for the benzene
molecule using different basis sets.
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Figures 3 and 4 give detailed insight for the scaling of
CCSD(T) energy and derivative calculations. As has been
discussed in the previous sections, the scaling of total time
with the number of nodes is improving for increasing system
size as the importance of the parallelized, time-determining
steps is even larger. Thus, this implementation will make
applications feasible within weeks or even days that would
take months or years to calculate, if 64 or 128 nodes were
used.

The following examples give the proof of principle, that
this simple scheme for adapting a serial implementation leads
to an efficient algorithm for cluster architectures that can be
used to reduce the overall time of large-scale CCSD(T)
calculations to acceptable dimensions.

3.1. Benchmark Calculation for the13C NMR Chemical
Shifts of Benzene.In a previous study it has been demon-
strated that methods like CCSD(T) can be used to achieve
an accuracy of 2-4 ppm deviation from experiment in the
calculation of13C NMR chemical shifts.53 While this study
included 16 small organic molecules, of which the largest
cases were CF4 and acetone (CH3COCH3), the limitations
of the serial implementation and the limited computational
resources did not allow for the calculation of larger mol-
ecules. One example for which accurate benchmark results
are of immediate interest is benzene as computational studies,
especially applying density functional theory, on all kinds
of substituted benzene species are abundant in the litera-
ture.54-56 Thus, the parallel algorithm for the calculation of
second-order properties described above has been applied

to perform CCSD(T) calculations of the NMR chemical shifts
of benzene using various basis sets in order to estimate basis
set convergence. Here, the new algorithm allows the use of
very large basis sets even for a system with 12 atoms and
42 correlated electrons.

The results including NMR chemical shifts and also zero-
point vibrational corrections are given in Table 7. An analysis
of the basis-set convergence leads to the conclusion that the
Dunning basis sets that have been optimized for energies
from post-HF correlation methods and that are fairly diffuse
are not very suitable for the calculation of the NMR chemical
shifts that probe the electron density closer to the nucleus.
Even the Dunning core-valence basis sets that are augmented
with tight functions do not perform as well as the corre-
sponding Karlsruhe basis sets62-65 if one aims at quantitative
accuracy in the prediction of NMR chemical shifts.

3.2. The Equilibrium Structure of Ferrocene. Within
the last 25 years many attempts were made to determine the
structure of ferrocene by applying various quantum-chemical
methods.66-70 A more recent study71 presented first calcula-
tions employing analytical CCSD(T) gradients on this
problem using a relatively small basis set and the frozen-
core approximation. Up to now, quantum-chemical models
have great difficulties to determine the equilibrium metal-
ligand distance, a quantity that is not directly accessible to
experiment but often used for benchmark studies in the
framework of density-functional theory. The structural
parameters of ferrocene in its eclipsed (equilibrium) and
staggered (saddle point) conformations have been determined
using analytic CCSD(T) gradients correlating all 96 electrons
with a full triple-ú quality basis set. Using the cc-pVTZ basis
set33,72(508 basis functions) one geometry cycle takes about
2.3 days when performing the calculation on 15 nodes. With
the cc-pwCVTZ basis set72,73 (572 basis functions) a geom-
etry cycle takes about 8.8 days using 14 nodes. The results
in comparison with previous coupled-cluster studies are
presented in Tables 8 and 9. The coupled-cluster results show
a relatively pronounced basis set dependence. Quadruple-ú
quality CCSD(T) calculations again correlating all electrons
are underway.

4. Conclusions
A detailed analysis of the time-determining steps in CC
energy, gradient, and second derivative calculations shows
that for almost all practical applications only a few terms
completely dominate the overall computation time. This
motivates a straightforward strategy for the parallelization
of CCSD and CCSD(T) energies, gradients, and second
derivatives that has been outlined in this paper. Starting from
the highly efficient serial implementation of the ACES II
MAB computer code an adaptation for affordable workstation

Table 7. 13C NMR Chemical Shifts for the Benzene
Molecule Using Various Basis Sets41 a

basis
no. of basis

functions
absolute NMR

shieldings CCSD(T)

cc-pCVDZ 138 82.07
cc-pCVTZ 342 66.61
tz2pc 198 68.42
qz2pc 228 64.95
pz3d2fc 474 63.22
vib corrb -3.43
total 59.79
experiment 57.157

a The experimental values have been taken from ref 57 using the
absolute shifts of carbon monoxide (σT)300K)0.9 ( 0.9 ppm).58 For a
detailed description of the basis sets used and the scheme for the
computation of the zero-point vibrational correction see ref 53. To
avoid the gauge-origin problem in the calculation of NMR chemical
shifts the gauge including atomic orbitals (GIAO)59-61 approach has
been used. b The vibrational correction is based on a perturbational
approach.53 The cubic force field was calculated at the MP2/cc-pVTZ
and the NMR shieldings for the displacements at the MP2/qz2p level
of theory. c The qz2p basis consists of a 11s7p2d/7s2p primitive set
contracted to 6s4p2d/4s2p and the pz3d2f basis of a 13s8p3d2f/
8s3p2d set contracted to 8s5p3d2f/5s3p2d.62-65

Table 8. Structure Parameters of the Eclipsed Conformation of Ferrocenea

method
no. of basis

functions Fe-C5 Fe-C C-C C-H <C5-H ref

fc-CCSD(T)/TZ2P+fb 373 1.655 2.056 1.433 1.077 1.03 71
CCSD(T)/cc-pVTZ 508 1.639 2.039 1.426 1.075 0.45 this work
CCSD(T)/cc-pwCVTZ 672 1.648 2.047 1.427 1.079 0.52 this work

a Bond lengths are given in Å; angles are given in deg. bfc (frozen core) denotes that only the 66 valence electrons were correlated.
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clusters has been obtained by parallelizing the most time-
consuming steps of the algorithm.

This also includes the calculation of parallel CCSD
energies and gradients using unrestricted (UHF) and restricted
open-shell (ROHF) Hartree-Fock references, parallel UHF-
CCSD(T) energies and gradients, parallel ROHF-CCSD(T)
energies as well as parallel equation-of-motion CCSD
energies and gradients for closed- and open-shell references.

The central aspect of the implementation presented here
is the replication of the cluster amplitudes and the distributed
evaluation, storage, and access of the two-electron integrals
to arrive at an algorithm for which sufficient local memory
and disk space are necessary but which is not dependent on
sophisticated high-speed network connections.

Benchmark calculations for systems with up to 1300 basis
functions show that the resulting algorithm for energies,
gradients, and second derivatives at the CCSD and
CCSD(T) level of theory exhibits good scaling with the
number of processors as long as the terms that are the time-
determining steps in the serial calculation still dominate the
overall time in the parallel computation. It is important to
note that the communication steps within the algorithm are
at no point bottlenecks in the current implementation, even
if 16 or more processors are used. Nevertheless, at larger
numbers of nodes the algorithm will break down, as steps
in the CCSD algorithm that have not been parallelized
prevent a better scaling of the overall execution time,
especially for small systems and large number of nodes. The
current limitation of the parallel implementation becomes
obvious for more than 16 processors. However, an analysis
of the algorithm leads us to the conclusion that the scaling
behavior is much better for larger examples, where the time-
determining steps that have been parallelized dominate the
overall execution time more strongly.

If a very rough estimate is allowed at this points
implementations of this kind would open the field of
application for the CC hierarchy of high accuracy ab initio
methods to systems of about 30 atoms in a triple-ú basis or
about 15 atoms in a quadruple-ú basis. Typical applications
would be calculations of the type presented in the last
sections of this paper like high accuracy calculations for
structures and energies, vibrational frequencies, or properties
related to the NMR spectroscopy of molecules with impor-
tance for homogeneous catalysis, model systems for bio-
chemistry, or state-of-the-art spectroscopy.

Technical Details.All calculations were carried out on a
16 node single core 3.4 GHz Intel Xeon (EM64T) cluster
with 2 MByte L2 Cache and 16 GB DDR-333 RAM on each
node. For the network communication a channel bonded
Gigabit Ethernet was used. Channel bonding was set up using
the two already built-in network interfaces of the compute

nodes by using the standard Linux kernel drivers. This
resulted in about 50% more network throughput in com-
parison to one single Gigabit Ethernet connection per node.
For the parallel implementation the message passing interface
(MPI)23 is used. The results presented here are obtained by
using LAM/MPI.74,75All communication in our implementa-
tion is done by the MPI_ALLREDUCE subroutine.

Acknowledgment. We thank Dr. Jonas Juse´lius (Uni-
versity of Tromsø, Norway) for help with various compu-
tational aspects of this work and Professor Kenneth Ruud
(University of Tromsø, Norway) for hospitality and helpful
discussions. Work in Chemnitz and in Mainz has been
supported by the Deutsche Forschungsgemeinschaft (AU
206/1-1 and GA 370/5-1) as well as by the Fonds der
Chemischen Industrie.

References

(1) Tajti, A.; Szalay, P. G.; Csa´szár, A. G.; Kállay, M.; Gauss,
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(69) Lüthi, H. P.J. Mol. Struct.(THEOCHEM) 1996, 388, 299.

(70) Xu, Z.-F.; Xie, Y.; Feng, W.-L.; Schaefer, H. F., IIIJ. Phys.
Chem. A2003, 107, 2716.

(71) Coriani, S.; Haaland, A.; Helgaker, T.; Jørgensen, P.Chem.
Phys. Chem.2006, 7, 245.

(72) Peterson, K. A.; Dunning, T. H.J. Chem. Phys.2002, 117,
10548.

(73) Balabanov, N. B.; Peterson, K. A.J. Chem. Phys.2005, 123,
064107.

(74) Burns, G.; Daoud, R.; Vaigl, J. LAM: An Open Cluster
Environment for MPI. Proceedings of Supercomputing
Symposium, 1994; pp 379-386.

(75) Squyres, J. M.; Lumsdaine, A. A Component Architecture
for LAM/MPI. Proceedings, 10th European PVM/MPI Users’
Group Meeting, Venice, Italy, 2003; pp 379-387.

(76) Gauss, J.; Stanton, J. F.J. Phys. Chem. A2000, 104, 2865.

CT700152C

74 J. Chem. Theory Comput., Vol. 4, No. 1, 2008 Harding et al.



Zn Coordination Chemistry: Development of Benchmark
Suites for Geometries, Dipole Moments, and Bond
Dissociation Energies and Their Use To Test and

Validate Density Functionals and Molecular Orbital Theory
Elizabeth A. Amin*,† and Donald G. Truhlar‡

Department of Medicinal Chemistry, College of Pharmacy, UniVersity of Minnesota,
717 Delaware St. SE, Minneapolis, Minnesota 55414-2959, and Department of

Chemistry, UniVersity of Minnesota, 207 Pleasant St. SE,
Minneapolis, Minnesota 55455-0431

Received August 17, 2007

Abstract: We present nonrelativistic and relativistic benchmark databases (obtained by coupled
cluster calculations) of 10 Zn-ligand bond distances, 8 dipole moments, and 12 bond dissociation
energies in Zn coordination compounds with O, S, NH3, H2O, OH, SCH3, and H ligands. These are
used to test the predictions of 39 density functionals, Hartree-Fock theory, and seven more
approximate molecular orbital theories. In the nonrelativisitic case, the M05-2X, B97-2, and mPW1PW
functionals emerge as the most accurate ones for this test data, with unitless balanced mean unsigned
errors (BMUEs) of 0.33, 0.38, and 0.43, respectively. The best local functionals (i.e., functionals with
no Hartree-Fock exchange) are M06-L and τ-HCTH with BMUEs of 0.54 and 0.60, respectively.
The popular B3LYP functional has a BMUE of 0.51, only slightly better than the value of 0.54 for the
best local functional, which is less expensive. Hartree-Fock theory itself has a BMUE of 1.22. The
M05-2X functional has a mean unsigned error of 0.008 Å for bond lengths, 0.19 D for dipole moments,
and 4.30 kcal/mol for bond energies. The X3LYP functional has a smaller mean unsigned error (0.007
Å) for bond lengths but has mean unsigned errors of 0.43 D for dipole moments and 5.6 kcal/mol for
bond energies. The M06-2X functional has a smaller mean unsigned error (3.3 kcal/mol) for bond
energies but has mean unsigned errors of 0.017 Å for bond lengths and 0.37 D for dipole moments.
The best of the semiempirical molecular orbital theories are PM3 and PM6, with BMUEs of 1.96 and
2.02, respectively. The ten most accurate functionals from the nonrelativistic benchmark analysis
are then tested in relativistic calculations against new benchmarks obtained with coupled-cluster
calculations and a relativistic effective core potential, resulting in M05-2X (BMUE ) 0.895), PW6B95
(BMUE ) 0.90), and B97-2 (BMUE ) 0.93) as the top three functionals. We find significant relativistic
effects (∼0.01 Å in bond lengths, ∼0.2 D in dipole moments, and ∼4 kcal/mol in Zn-ligand bond
energies) that cannot be neglected for accurate modeling, but the same density functionals that do
well in all-electron nonrelativistic calculations do well with relativistic effective core potentials. Although
most tests are carried out with augmented polarized triple-ú basis sets, we also carried out some
tests with an augmented polarized double-ú basis set, and we found, on average, that with the smaller
basis set DFT has no loss in accuracy for dipole moments and only ∼10% less accurate bond lengths.

1. Introduction
Zinc is an essential element for humans, primarily because
it serves as a cofactor for a very large number of enzyme

reactions1,2 (it is the second most abundant transition metal
cation in biology3), and it is technologically important in
ZnO photoluminescent materials and nanoparticles (quantum
dots).4 Zinc-binding proteins that perform essential functions
in a variety of species, and for which accurate active-site
modeling parameters are needed, include insulin, metal-
lothionein, DNA topoisomerase, phosphotriesterase (an
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enzyme that hydrolyzes organophosphorus compounds like
sarin5), zinc-finger proteins, matrix metalloproteinases (MMPs),
the anthrax toxin lethal factor, alcohol dehydrogenase, human
carbonic anhydrase,6 cytidine deaminase,â-lactamases, and
copper-zinc dismutase. In metalloproteins, Zn often functions
as a Lewis acid, with catalysis occurring in its first
coordination shell, or by electrostatically stabilizing reactants
or intermediates in the active site. Zinc fluorescent sensors
used to monitor labile Zn2+ 7 and chelating agents used in
froth flotation8 also operate by inner-shell coordination.
Geometries, dipole moments, and bond dissociation energies
of Zn coordination compounds are thus critical parameters
for reliable simulations of biological function2,9-30 and
technological applications of Zn chemistry. Density func-
tional theory (DFT) is a very promising electronic structure
calculation tool for obtaining such parameters,31-33 but
systematic validation studies, which have not yet been
reported, are required to understand the reliability of DFT
calculations for Zn binding as well as the reliability of
simpler semiempirical calculations that are often used
because they are faster and less expensive.

The present paper presents nonrelativistic and relativistic
validation suites of bond distances for 10 zinc-ligand
complexes, dipole moments for 8 Zn model compounds, and
bond dissociation energies (BDEs) for 12 zinc compounds.
In obtaining all three parameter sets, we chose model
compounds with Zn bonds to N, O, and S, which are the
three most common first-coordination-shell atoms in zinc
enzymes.25,34-37 Although our first priority was to test model
compounds representing biozinc centers, we also include one
compound with Zn bonds to H, which occur at defect sites
in ZnO crystals38 and in hydrogen-doped zinc oxide thin
films.39 These data are then used to test practical electronic
structure methods of both fundamental types: density
functional theory (DFT)40 and wave function theory (WFT).41,42

DFT methods evaluated with a nonrelativistic Hamiltonian
include the five most accurate functionals43-54 for metal-
ligand bond energies in a recent study55 of 21 metal-ligand
complexes with 57 different density functionals and the two
most accurate functionals48,51,55,56overall in that study (based
on the 21 metal-ligand bond energies, 8 transition-metal
dimer bond energies, 6 representative main-group atomiza-
tion energies, 7 ionization potentials, 13 metal-ligand bond
lengths, and 8 transition metal dimer bond lengths) plus
five density functionals developed subsequently57-60 and
26 other popular and representative density func-
tionals43-46,48,49,51,54,56,61-78 of various types. The NDO meth-
ods evaluated for comparison with DFT calculations are
AM1,9,79-81 MNDO,82,83MNDO/d,84,85PM3,86 PM3(tm),86-90

and the newer PM6 method.91 (The PM3(tm) method is tested
only for geometries and bond energies because it was not
parametrized for dipole moments88 and is specifically stated
by its developers not to be used for that purpose.) The IEHT
method that we test is self-consistent-charge density-
functional tight-binding (SCC-DFTB).92-94 For the nonrela-
tivistic evaluations, we test the following: 39 density
functionals, both local and nonlocal; ab initio Hartree-Fock
(HF) theory; six semiempirical molecular orbital methods
of the neglect of differential overlap (NDO) variety; and one

iterative extended Hu¨ckel theory (IEHT) method, which is
also called a tight-binding method. These calculations involve
testing nonrelativistic DFT calculations against nonrelativistic
benchmarks. We then incorporate a relativistic effective core
potential (ECP)95 for Zn into the top ten methods resulting
from this analysis and test these relativistic DFT calculations
against new benchmarks that also incorporate relativistic
effects via this ECP.

2. Data Sets and Computational Methods
2.1. Basis Sets.We use two basis sets in this work, and we
will denote them B1 and B2. Basis set B1 is used for
nonrelativistic DFT calculations. In this basis, Zn is repre-
sented by the 6-311+G(d,p) basis set of inGaussian 03,96

which is constructed from the earlier work of Wachters97

and Hay98 as modified by Raghavachari and Trucks,99 who
described both an “spd” basis and an “spdf” basis. The basis
used here is thespdbasis further polarized with a singlef
set with an exponent99 of 1.62. The final Zn basis for B1
consists of a 15s11p6d1f primitive basis contracted to
10s7p4d1f, with the outer functions uncontracted. For H, C,
N, O, and S in Series A, the basis set is MG3S′, which
denotes MG3S100 with oxygen f functions removed to
decrease computation time. Thus the MG3S′ basis set is
6-311+G(2df,2p)100-102 for H, C, and N, 6-311+G(2d)102-104

for O, and the same as in G3Large105 without core polariza-
tion functions for S.

Basis set B2 is used for relativistic DFT calculations, and
for both nonrelativistic and relativistic WFT calculations (in
particular, for CCSD(T) and CCSD benchmarks and for MP2
calculations used for extrapolation). We augment the Zn basis
by adding two additionalf functions specified by Raghava-
chari and Trucks,99 with exponents of 0.486 and 5.40, and
we restore the MG3Sf functions to oxygen.

In both basis sets we use five spherical harmonic basis
functions for d sets and seven spherical harmonic basis
functions forf sets.

A smaller basis set will be discussed briefly in section
4.1.

2.2. Core Orbitals and Relativistic Effects. Relativistic
effects may be divided into scalar relativistic effects and
vector effects.106 The most important vector relativistic effect
is spin-orbit coupling, but, except for ZnH, all Zn-containing
species treated in the present article are closed-shell singlets
for which spin-orbit coupling vanishes. Spin-orbit coupling
also vanishes for ZnH because it is a2Σ+ state. Spin-orbit
coupling is nonzero for O and S and was accounted for in
all relativistic calculations (benchmarks and more ap-
proximate methods) by subtracting 0.02 kcal/mol (O) and
0.56 kcal/mol (S) from the calculated bond dissociation
energies for processes that respectively produce O and S,
based on atomic energy levels.107

Scalar relativistic effects are very important for 5d
transition metals, important for 4d transition metals, and
“small” but not negligible for 3d transition metals like Zn.
For 3d and 4d transition metals, an adequate way to include
scalar relativistic effects in either WFT or DFT is to replace
the inner core orbitals by a relativistic effective core potential.
(A recent study validating these procedures for PdCO may
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be consulted for further discussion.108) In the present article,
the inner core is defined as the next-to-largest noble gas core,
which is sometimes called the “small core” prescription (thus
the inner core for Zn has 10 electrons, whereas a large-core
prescription (not used here) would treat 18 electrons as the
core). In all WFT and DFT relativistic calculations, scalar
relativistic effects at Zn are included by replacing the inner
core electrons by the quasirelativistic multielectron-fit
(MEFIT, R) pesudopotential of Preuss et al.95 Note that we
do not use the basis set developed95 for use with this
pseudopotential; all relativistic calculations in the present
article use the B2 basis set.

In the present nonrelativistic calculations, all electrons are
included explicitly with no effective core potential. In the
nonrelativistic DFT calculations, all electrons are correlated.
The nonrelativistic WFT calculations consist of an uncor-
related Hartree-Fock step followed by a correlated post-
Hartree-Fock step. In the latter, the inner core (10 electrons)
is not correlated. In extensive tests not presented here, we
found that using the large-core prescription for the post-
Hartree-Fock step gives significantly different geometries
and should not be trusted.

2.3. Benchmark Databases. With the exception of ZnH2,
for which the gas-phase equilibrium internuclear distancere

has been obtained by high-resolution infrared emission
spectroscopy,109,110 experimental bond lengths and dipole
moments have not yet been published for the model
compounds in this study. Therefore our first goal is to
assemble benchmark data sets. For this purpose, we first
consider a set of ten Zn model compounds. For eight of these,
in particular, ZnO, ZnS, Zn(NH3)2+ Zn(SCH3)+ , Zn(H2O)2+,
Zn(OH)2, ZnOH+, and ZnH2, coupled cluster theory111 with
single and double excitations112 and quasiperturbative triple
excitations (CCSD(T))113 with basis B2 is applied to obtain
the best estimates of accurate geometric parameters. The
CCSD(T) method has been shown in multiple studies114-117

to reliably and accurately reproduce experimental geometries
for small transition-metal model compounds similar to those
examined here when the basis set is large enough. For
nonrelativistic benchmarks, the next-to-largest noble gas
cores were frozen in these post-HF calculations; the rela-
tivistic best estimates use the quasirelativistic multielectron-
fit (MEFIT,R) pseudopotential of Preuss et al. on Zn.95 The
Zn-ligand equilibrium bond-distance values obtained in
these ways are shown in Table 1.

The two remaining model compounds, Zn(NH3)3
2+ and

Zn(NH3)4
2+, in the geometry database were too large for

CCSD(T)/B2 optimizations; therefore, our best estimates in
these cases were obtained by extrapolation from MP2/B2
calculations. In particular, we noted that increasing the level
of calculation from MP2/B2 to CCSD(T)/B2 for Zn(NH3)2+

uniformly increases the bond length, as shown in Table 2. It
increases the Zn-N bond distance by 0.020 Å (nonrelativ-
istic) and 0.022 Å (relativistic); we therefore increased the
MP2/B2 calculated Zn-N re values by these amounts for
Zn(NH3)3

2+ and Zn(NH3)4
2+ to obtain the best estimates in

Table 1.
Best estimates of dipole moments were obtained by CCSD/

B2 optimizations on an eight-compound data set: ZnO, ZnS,

Zn(NH3)2+ Zn(SCH3)+, Zn(H2O)2+, ZnOH+, Zn(NH3)2(OH)2,
and Zn(NH3)(OH)+ (Table 3). Benchmarks for Zn-ligand
bond dissociation energies were obtained for a 12-compound
data set: ZnO, ZnS, Zn(NH3)2+, Zn(OH)2, ZnH2, Zn(SCH3)+

,Zn(H2O)2+, ZnOH+, Zn(NH3)2(OH)2, Zn(NH3)(OH)+, Zn-
(NH3)3

2+, and Zn(NH3)4
2+ (Table 4). For molecules that

include ammonia groups in addition to other ligands, the
Zn-N BDE is the one considered, as shown in the last two
rows of Table 4. Bond dissociation energies for four of these
molecules, Zn(NH3)(OH)+, Zn(NH3)2(OH)2, Zn(NH3)3

2+, and
Zn(NH3)4

2+, were again extrapolated from MP2/B2 calcula-
tions as they proved too large for CCSD(T) optimizations.
Energies for Zn(NH3)3

2+ and Zn(NH3)4
2+ were estimated

based on the 1.29 kcal/mol (nonrelativistic) and 1.42 kcal/
mol (relativistic) decrease in BDE for Zn(NH3)2+ from the
MP2 to the CCSD(T) level (Table 5). The mean decrease in

Table 1. Best Estimates of Nonrelativistic and Relativistic
Zn-Ligand Bond Distances Obtained by CCSD(T)/B2

compound distance re (Å), nonrel re (Å), rel

ZnO Zn-O 1.721 1.710
ZnS Zn-S 2.077 2.067
Zn(NH3)2+ Zn-N 1.955 1.939
Zn(H2O)2+ Zn-O 1.868 1.852
ZnOH+ Zn-O 1.764 1.757
Zn(SCH3)+ Zn-S 2.181 2.170
Zn(OH)2 Zn-O 1.779 1.767
ZnH2 Zn-H 1.544 1.528a

Zn(NH3)3
2+ Zn-N 2.016b 2.005b

Zn(NH3)4
2+ Zn-N 2.072b 2.063b

a For comparison, the experimental re value is 1.524 for ZnH2.110

b Estimated by extrapolation; cf. section 2.3.

Table 2. Comparison of Relativistic and Nonrelativistic
MP2/B2 and CCSD(T)/B2 Bond Distances

compound distance ∆re (Å), nonrela ∆re (Å), rela

ZnO Zn-O 0.042 0.046
ZnS Zn-S 0.028 0.030
Zn(NH3)2+ Zn-N 0.022 0.020
Zn(H2O)2+ Zn-O 0.010 0.010
ZnOH+ Zn-O 0.015 0.017
Zn(SCH3)+ Zn-S 0.040 0.040
Zn(OH)2 Zn-O 0.020 0.021
ZnH2 Zn-H 0.025 0.025
a ∆re ) [re(CCSD(T)/B2) - re(MP2/B2)].

Table 3. Nonrelativistic and Relativistic Best Estimates of
Dipole Moments Calculated by the CCSD/B2 Method

dipole moment (D)a

compound nonrelativistic relativistic

ZnO 5.69 5.50
ZnS 5.73 5.47
Zn(NH3)2+ 1.07 1.27
Zn(SCH3)+ 3.95 3.59
Zn(H2O)2+ 0.27 0.39
ZnOH+ 4.51 4.27
Zn(NH3)2(OH)2 3.86 3.80
Zn(NH3)(OH)+ 7.40 7.34

a 1 D ≡ 1 Debye. For ions, the origin is at the center of mass of
the nuclei.
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BDEs for Zn(NH3)2+, Zn(OH)2, Zn(H2O)2+, and ZnOH+

from MP2/B2 to CCSD(T)/B2 was 1.24 kcal/mol (nonrela-
tivistic) and 1.36 kcal/mol (relativistic); we therefore estimate
CCSD(T) BDEs for Zn(NH3)(OH)+ and Zn(NH3)2(OH)2
based on these values. BDEs for the remaining eight
molecules were obtained from CCSD(T)/B2 optimizations.

2.4. Density Functionals. The properties of the density
functionals we tested are given in Table 6. The five most
accurate functionals in ref 55 for metal-ligand bond energies
were TPSS1KCIS,43-47 O3LYP,48-50 MPW1KCIS,43-45,51,52

TPSSh,53 and B97-2.54 The two most accurate functionals
(overall) in ref 55 were G96LYP48,56and MPWLYP1M;48,51,55

BLYP48,64and MOHLYP48,49,55were also among the five best
functionals overall and are also tested here. The new
functionals we test are as follows: M05,57 M05-2X,58 M06-
L59, M06,60 M06-2X,61 and G96LYP1M.118 In addition to
these, we tested an assortment of popular functionals with
varying performance ranges.43-46,48,49,51,55,56,61-78

The functional set tested here comprises 1 local spin
density approximation (LSDA), 5 generalized-gradient ap-
proximation (GGA), 7 generalized-gradient exchange (GGE),
3 GGE with scaled correlation (GGSC), 10 hybrid GGA
(HGGA), 9 hybrid meta GGA (HMGGA), and 4 meta GGA
(MGGA) methods (see Table 6). LSDA functionals depend
on the spin densities; GGA functionals depend on the
gradient of the spin densities as well as the spin densities
themselves; HGGA functionals depend on the percentage of

Hartree-Fock (HF) exchange, the density gradients, and the
spin densities; MGGA functionals depend on the spin kinetic
energy densitiesτσ, the spin density gradients, and the spin
densities; and HMGGA functionals depend onτσ, HF
exchange, the density gradients, and the spin densities. GGE
methods combine GGA exchange with LSDA correlation,
and in GGSC, a relatively new approach,55 the Kohn-Sham
operator is defined by

whereFSE is the Slater local exchange functional,55 FGCE is
the gradient correction to the LSDA exchange,FLC is the
LSDA correlation functional, andFGCC is the gradient
correction to the LSDA correlation, andY is the percentage

Table 4. Best Estimates of Nonrelativistic and Relativistic
Zn-Ligand Bond Dissociation Energies (BDEs in kcal/mol)
Obtained by CCSD(T)/B2

compound
dissociation

products

BDE
(kcal/mol),

nonrel

BDE
(kcal/mol),

rel

ZnO Zn, O 83.51 80.30
ZnS Zn, S 61.92 58.00
Zn(NH3)2+ Zn2+, NH3 129.00 134.15
Zn(H2O)2+ Zn2+, H2O 96.83 99.78
ZnOH+ Zn2+, OH- 428.18 435.66
Zn(SCH3)+ Zn2+, SCH3

- 420.60 433.84
Zn(OH)2 ZnOH+, OH- 256.81 258.71
ZnH2 ZnH, H 78.72 78.90
Zn(NH3)3

2+ Zn(NH3)2
2+, NH3 61.74a 60.67a

Zn(NH3)4
2+ Zn(NH3)3

2+, NH3 46.81a 46.04a

Zn(NH3)2(OH)2 Zn(NH3)(OH)2, NH3 10.31a 8.87a

Zn(NH3)(OH)+ ZnOH+, NH3 79.31a 81.14a

a Estimated by extrapolation; cf. section 2.3.

Table 5. Comparison of Relativistic and Nonrelativistic
MP2/B2 and CCSD(T)/B2 Bond Dissociation Energies
(BDEs)

compound
dissociation

products

∆BDE

(kcal/mol),
nonrela

∆BDE

(kcal/mol),
rela

ZnO Zn, O -31.75 -31.30
ZnS Zn, S -16.82 -17.17
Zn(NH3)2+ Zn2+, NH3 -1.29 -1.42
Zn(H2O)2+ Zn2+, H2O -0.94 -1.02
ZnOH+ Zn2+, OH- 0.34 0.19
Zn(SCH3)+ Zn2+, SCH3

- -1.63 1.73
Zn(OH)2 ZnOH+, OH- -2.41 -2.79
ZnH2 ZnH, H 1.02 0.77
a ∆BDE ) [BDE (CCSD(T)/B2) - BDE (MP2/B2)].

Table 6. Summary of the DFT Methods Evaluated in This
Studya

functional type X
τ in

E or C? refs

B1LYP HGGA 25 neither 48,64,71
B3LYP HGGA 20 neither 48,67,68
B97-2 HGGA 21 neither 54
BLYP GGA 0 neither 48,64
BP86 GGA 0 neither 63,64
BVWN5 GGE 0 neither 62,64
G96HLYP GGSC 0 neither 48,55,56
G96LYP GGA 0 neither 48,56
G96LYP1Mb GGSC 0 neither 118
G96VWN5 GGE 0 neither 56,62
τ-HCTH MGGA 0 exchange 73,75
M05 HMGGA 28 both 57
M05-2X HMGGA 56 both 58
M06 HMGGA 27 both 60
M06-2X HMGGA 54 both 60
M06-L MGGA 0 both 59
MOHLYP GGSC 0 neither 48,49,55
MPW1B95 HMGGA 31 correlation 51,69,77
MPW1KCIS HMGGA 15 correlation 43-45,51,52
mPW1PWc HGGA 25 neither 51,65
mPWLYP GGA 0 neither 48,51
MPWLYP1M HGGA 5 neither 48,51,55
mPWVWN5 GGE 0 neither 51,62
O3LYP HGGA 11.61 neither 48-50
OLYP GGA 0 neither 48,49
OPWL GGE 0 neither 49,66
OV5LYP HGGA 0 neither 48,49,62
OVWN5 GGE 0 neither 49,62
PBEhd HGGA 25 neither 70,74
PBELYP HGGA 0 neither 48,70
PBEVWN5 GGE 0 neither 62,70
PW6B95 HMGGA 28 correlation 78
SVWN5 LSDA 0 neither 61,62
TPSS MGGA 0 both 46
TPSS1KCIS HMGGA 13 both 43-47
TPSSh HMGGA 10 both 53
TPSSVWN5 GGE 0 exchange 46,62
VSXCe MGGA 0 both 72
X3LYP HGGA 21.8 neither 38,44,45,68

a GGA: generalized-gradient approximation; GGE: generalized-
gradient exchange; GGSC: generalized-gradient exchange with
scaled correlation; HGGA: hybrid GGA; HMGGA: hybrid meta GGA;
LSDA: local spin density approximation; MGGA: meta GGA; X )
percentage of Hartree-Fock exchange; E ) exchange; C ) correla-
tion. b G96LYP1M is like G98HLYP except that the gradient correction
to the correlation energy is multiplied by 0.54 instead of 0.50. c Same
as mPWO, mPW1PW91, and MPW25. d Same as PBE0 and
PBE1PBE. e Same as VS98.

F ) FSE + FGCE + FLC + (Y/100)FGCC (1)
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of the gradient correction to correlation that is included. Here
we setY ) 50 in two of the GGSC functionals in this study,
G96HLYP and MOHLYP, as was done in previous work,55

and we setY ) 54 in another.118 For each theory level we
specify the percentageX of Hartree-Fock exchange, and
whetherτσ is included in the exchange and/or correlation
functionals.

2.5. Computational Details. CCSD, CCSD(T), DFT,
AM1, PM3, and MNDO calculations were carried out using
Gaussian 03or a locally modified version ofGaussian 0395

on the Minnesota Supercomputing Institute core resources
and on an Alienware MJ-12 dual-CPU workstation running
under the SUSe Linux Professional 9.3 operating system.
MNDO/d and PM3(tm) calculations were obtained on the
Alienware MJ-12 with the SPARTAN ’02 and ’04 Linux
software packages.119PM6 calculations were performed using
MOPAC 2007120 on Alienware Area-51m and Alienware
Sentia machines running Windows XP. SCC-DFTB calcula-
tions were done using DFTB/DYLAX92-94 on the Minnesota
Supercomputing Institute core resources.

3. Results
All nonrelativistic DFT methods and HF theory were tested
using the B1 basis set against nonrelativistic B2 benchmark
values; the top ten functionals resulting from this analysis
were then evaluated using the aforementioned pseudopoten-
tial95 against relativistic B2 benchmark values.

3.1. Nonrelativistic Calculations.We first compare the
nonrelativistic geometric parameters, dipole moments, and
bond dissociation energies obtained by the 39 chosen DFT
functionals, HF theory, the six NDO methods, and SCC-
DFTB to the nonrelativistic benchmark values we reported
in section 2. We included DFT levels with a fairly wide
variation in Hartree-Fock exchange, from 0 to 56% as well
as HF theory with 100% Hartree-Fock exchange. The
quality of our results was evaluated by mean unsigned errors
(MUEs) representing the average absolute deviations from
calculated benchmark values and also by mean signed errors
(MSEs) used to detect systematic error. The mean unsigned
errors for DFT and Hartree-Fock Zn-ligand equilibrium
bond distances are reported in Table 7, and Table 8 gives
analogous results for semiempirical molecular orbital theory.
Tables 9 and 10 give the mean unsigned errors for model-
compound dipole moments, and Tables 11 and 12 list MUEs
for bond dissociation energies. Corresponding MSEs are
provided in the Supporting Information.

The balanced mean unsigned error (BMUE) is a unitless
quantity that normalizes MUEs for each parameter against
the average error over all methods for that parameter and
thus serves as a valuable criterion to evaluate the overall
performance of each technique

where AMUE is the average mean unsigned error, i.e., the
mean of all MUEs for bond distances (in Å), dipole moments
(in D), or bond dissociation energies (in kcal/mol). Table
13 gives nonrelativistic BMUEs for all methods except PM3-

(tm), which is unsuitable88 for transition-metal dipole moment
calculations and which returned very large errors in dipole
moments for our compound set; and SCC-DFTB, which gave
enormously inaccurate bond dissociation energies. For these
reasons PM3 (tm) and SCC-DFTB were not included in
calculating AMUEs.

Table 14 shows results for a smaller basis set discussed
in section 4.1

3.2. Relativistic Calculations. We used the same error
measures for the relativistic comparisons. Table 15 lists
relativistic BMUEs for the top ten functionals from Table
13, and tables analogous to Tables 7, 9, and 11, but for
relativistic calculations, are given in the Supporting Informa-
tion.

4. Discussion
4.1. Nonrelativistic Tests. The X3LYP functional shows the
best performance for bond lengths in the nonrelativistic
calculations, followed by PW6B95, M05-2X, and B3LYP.
These methods all have 20e X e 56. The next two
functionals in the ranking haveX ) 15 andX ) 25. The

BMUE ) {[MUE(in Å)/AMUE(in Å)] +
[MUE(in D)/AMUE(in D)] +

[MUE(in kcal/mol)/AMUE(in kcal/mol)]}/3 (2)

Table 7. Mean Unsigned Errors (MUEs) in DFT and HF
Zn-Ligand Bond Distance for Ten Zinc-Ligand
Complexes (Nonrelativistic)a

functional MUE (Å) functional MUE (Å)

X3LYP 0.0069 M06-2X 0.0169
PW6B95 0.0072 MPWLYP1M 0.0175
M05-2X 0.0078 G96LYP 0.0177
B3LYP 0.0080 mPWLYP 0.0205
MPW1KCIS 0.0080 OLYP 0.0215
B1LYP 0.0084 BLYP 0.0223
mPW1PW 0.0089 HF 0.0224
PBEh 0.0089 G96LYP1M 0.0236
PB86 0.0090 G96HLYP 0.0241
B97-2 0.0090 OV5LYP 0.0244
TPSSh 0.0094 PBELYP 0.0291
TPSS1KCIS 0.0097 TPSSVWN5 0.0309
MPW1B95 0.0105 G96VWN5 0.0318
M06-L 0.0109 OVWN5 0.0355
TPSS 0.0113 OPWL 0.0358
τ-HCTH 0.0133 mPWVWN5 0.0359
O3LYP 0.0139 PBEVWN5 0.0368
M05 0.0147 BVWNS 0.0377
M06 0.0147 SVWN5 0.0410
VSXC 0.0151 MOHLYP 0.0769
a Nonrelativistic DFT/B1 tested against nonrelativistic CCSD(T)/

B2.

Table 8. Mean Unsigned Errors (MUEs) in NDO and
SCC-DFTB Zn-Ligand Bond Distance for Ten
Zinc-Ligand Complexes (Nonrelativistic)

method MUE (Å)

SCC-DFTB 0.043
PM3(tm) 0.061
AM1 0.063
PM3 0.069
PM6 0.077
MNDO(d) 0.078
MNDO 0.082
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first 25 functionals have MUE< 0.022 Å, whereas Table 8
shows that even the best of the semiempirical molecular
orbital methods has MUE) 0.043 Å.

It is interesting to compare the results in Table 7 to a
previous study121of bond lengths in van der Waals complexes
that included results for Zn2, ZnNe, ZnAr, and ZnKr by 19
different density functionals. If one computes the mean
unsigned errors on those four compounds, the best result
(0.28 Å) was obtained by using M05-2X. (The mean
unsigned error is larger than the typical value in the present
work because the van der Waals complexes have flatter
potentials than those for the covalent and coordinate covalent
bonds studied here.) Seven other functionals included in that
study are also included here, and their mean unsigned errors
for the four Zn-containing van der Waals molecules are (in
Å) as follows: PW6B95, 0.38; PBEh, 0.41; MPW1B95,
0.44; M05, 0.45; TPSSh, 0.59; TPSS, 0.59; and mPW1PW,
0.67. It is encouraging that the M05-2X and PW6B95 density
functionals perform relatively well in both the previous and
the present studies.

Table 9 shows that the M05-2X functional predicts the
most accurate nonrelativistic dipole moments by a large
margin. The B97-2, M05, mPW1PW, MPW1B95, and PBEh

functionals are in second through sixth place, with MUEe
0.29 D. In contrast the top semiempirical molecular orbital
method, AM1, has MUE) 0.79 D (Table 10). We note that
SCC-DFTB is more expensive than NDO methods, buts
despite its namesits performance is more similar to other
NDO methods than to DFT.

The M06-2X functional is the top DFT method for
nonrelativistic bond dissociation energies (Table 11), fol-
lowed closely by the M05, M06, B97-2, B1LYP, and M05-
2X functionals. Once again the NDO methods prove inferior,
with PM6 as the best method in this class with MUE) 13.72
kcal/mol. Most notably, SCC-DFTB rendered highly inac-
curate BDEs for our compound set, with MUE) 302.13
kcal/mol. In the remainder of the discussion we focus on
the unitless balanced MUE (BMUE), which takes account
of all three parameters examined here: bond distances, dipole
moments, and bond dissociation energies.

Overall, for nonrelativistic BMUE, Table 13 shows that
DFT methods perform significantly better than NDO methods
and SCC-DFTB for the model Zn model compounds in this
study. BMUEs for DFT methods ranged from 0.333 to 1.684,

Table 9. Mean Unsigned Errors (MUEs) in DFT and HF
Dipole Moment for Eight Zinc-Ligand Complexes
(Nonrelativistic)a

functional MUE (D) functional MUE (D)

M05-2X 0.19 OV5LYP 0.47
B97-2 0.26 OLYP 0.51
M05 0.27 TPSS 0.54
mPW1PW 0.28 TPSSVWN5 0.57
MPW1B95 0.29 MPW1KCIS 0.61
PBEh 0.29 VSXC 0.63
PW6B95 0.33 G96VWN5 0.63
O3LYP 0.36 G96HLYP 0.70
M06-2X 0.37 G96LYP1M 0.70
TPSSh 0.38 mPWVWN5 0.72
TPSS1KCIS 0.39 BP86 0.73
B1LYP 0.39 MPWLYP1M 0.75
OVWN5 0.39 PBEVWN5 0.75
OPWL 0.39 PBELYP 0.81
MOHLYP 0.40 BVWN5 0.82
τ-HCTH 0.41 BLYP 0.85
X3LYP 0.43 mPWLYP 0.85
M06-L 0.43 HF 0.87
B3LYP 0.44 SVWN5 0.89
M06 0.45 G96LYP 0.90
a Nonrelativistic DFT/B1 tested against nonrelativistic CCSD/B2.

Table 10. Mean Unsigned Errors (MUEs) in NDO and
SCC-DFTB Dipole Moment for Eight Zinc-Ligand
Complexes

method MUE (D)

AM1 0.79
PM3 0.86
PM6 1.15
MNDO 1.28
MNDO(d) 1.29
SCC-DFTB 1.45

Table 11. Mean Unsigned Errors (MUEs) in DFT and HF
Bond Dissociation Energy (BDE) for Twelve Zinc-Ligand
Complexes (Nonrelativistic)a

functional MUE (kcal/mol) functional MUE (kcal/mol)

M06-2X 3.30 G96HLYP 7.27
M05 3.34 TPSSh 7.28
M06 3.80 G96LYP1M 7.33
B97-2 3.94 OV5LYP 7.47
B1LYP 4.26 mPWVWN5 7.50
M05-2X 4.30 OLYP 7.74
MPW1B95 5.16 OVWN5 7.87
mPW1PW 5.24 OPWL 7.88
PW6B95 5.26 PBEVWN5 7.90
M06-L 5.40 VSXC 8.04
B3LYP 5.41 TPSS 8.41
O3LYP 5.51 MPWLYP1M 8.49
X3LYP 5.64 BLYP 8.67
TPSSVWN5 5.97 PBELYP 8.89
PBEh 5.99 BP86 9.06
TPSS1KCIS 6.51 mPWLYP 9.49
MPW1KCIS 6.59 G96LYP 9.50
G96VWNS 6.66 MOHLYP 13.04
τ-HCTH 6.73 HF 15.02
BVWN5 6.99 SVWN5 22.06

a Nonrelativistic DFT/B1 tested against nonrelativistic CCSD(T)/
B2.

Table 12. Mean Unsigned Errors (MUEs) in NDO and
SCC-DFTB Bond Dissociation Energy (BDE) for Twelve
Zinc-Ligand Complexes

method MUE (kcal/mol)

PM6 13.72
PM3 20.43
AM1 27.37
MNDO(d) 28.19
MNDO 31.26
PM3(tm) 84.96
SCC-DFTB 302.13
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while NDO methods yielded BMUEs between 1.964 (PM3,
best) to 2.686 (MNDO, worst). The HF theory resulted in a
BMUE of 1.222, less favorable than all but two of the studied
DFT methods. With a BMUE of 1.964, PM3 is the best NDO
method; however, PM3 still tested worse than all DFT
methods we examined. While SCC-DFTB returned very
inaccurate bond dissociation energies (see above) and was
therefore not included in the calculations of BMUE, its
performance was far better for bond lengths (MUE) 0.043
Å, best among the NDO methods) and somewhat better for
dipole moments (MUE) 1.45 D, worst among the NDO
methods).

The M05-2X functional,58 which has demonstrated excel-
lent performance for noncovalent interactions and barrier
heights in tests against broad main-group databases58,122and
tests for silicon chemistry,123 gives the lowest overall
nonrelativistic BMUE (0.333) for this compound set. M05-
2X was parametrized against 34 nonmetal data values,
whereas the closely related M05 functional was parametrized
for metals as well as nonmetals.57 Interestingly, here we find
that M05-2X performs better for Zn than does M05 (non-
relativistic BMUE ) 0.437), indicating that Zn, ad10

transition metal, may more closely resemble a main-group
element than it does other transition metals. This may also
explain the extremely poor performance of the MOHLYP
functional, a transition-metal-parametrized GGSC method,
with regard to geometries.

Also in the top five functionals tested were B97-2 (BMUE
) 0.376), mPW1PW (BMUE) 0.426), M05 (BMUE)
0.437), and PW6B95 (BMUE) 0.438). The popular B3LYP
theory ranks #10 overall (BMUE) 0.510), testing quite well
for geometries (MUE) 0.008 Å) but less so for dipole
moments (MUE) 0.44 D) and bond dissociation energies
(MUE ) 5.41 kcal/mol).

Inclusion of HF exchange is found to be very helpful for
the Zn compounds we included in the present tests: all
functionals with HF exchange resulted in nonrelativistic
BMUEs below the normalized mean of 1.0, whereas 45%
of the functionals with no HF exchange yielded nonrelativ-
istic BMUEs above 1.0. Ten additional functionals withX

Table 13. Balanced Mean Unsigned Errors (BMUEs,
Unitless) for Three Databases of Zn-Ligand Compounds
for DFT, HF, and NDO Methods (Nonrelativistic)a

functional BMUE functional BMUE

M05-2X 0.333 OVWN5 0.900
B97-2 0.376 OPWL 0.904
mPW1PW 0.426 G96LYP1M 0.909
M05 0.437 G96HLYP 0.912
PW6B95 0.438 G96VWN5 0.953
MPW1B95 0.450 BLYP 1.00
B1LYP 0.451 G96LYP 1.01
PBEh 0.456 mPWLYP 1.02
X3LYP 0.496 mPWVWN5 1.08
B3LYP 0.510 PBELYP 1.09
M06-2X 0.518 PBEVWN5 1.12
TPSS1KCIS 0.535 BVWN5 1.14
M06-L 0.541 HF 1.22
O3LYP 0.542 MOHLYP 1.58
TPSSh 0.550 SVWN5 1.68
M06 0.551 PM3 1.96
τ-HCTH 0.601 PM6 2.02
MPW1KCIS 0.644 AM1 2.06
TPSS 0.701 MNDO(d) 2.56
VSXC 0.784 MNDO 2.69
OLYP 0.786
OV5LYP 0.796
BP86 0.800
TPSSVWN5 0.885
MPWLYP1M 0.895
a Nonrelativistic DFT/B1 and other methods tested against non-

relativistic CCSD(T)/B2 for geometries and bond dissociation energies
and against nonrelativistic CCSD/B2 for dipole moments.

Table 14. Mean Unsigned Errors in Bond Length (Å) and
Dipole Moment (D) with the 6-31+G(d,p) Basis for H, C, N,
O, Sa

bond length MUE (Å) dipole moment MUE (D)

PBEh 0.0068 M05-2X 0.20
PW6B95 0.0068 B97-2 0.23
mPW1PW 0.0073 mPW1PW 0.25
M05-2X 0.0091 M05 0.25
B97-2 0.0094 MPW1B95 0.26
X3LYP 0.0096 PBEh 0.26
MPW1KCIS 0.0096 PW6B95 0.30
M06-L 0.0099 O3LYP 0.32
TPSS1KCIS 0.0102 OVWNS 0.34
TPSSh 0.0103 OPWL 0.34
M06 0.0110 TPSSh 0.34
B3LYP 0.0111 B1LYP 0.34
BP86 0.0112 TPSS1KCIS 0.35
TPSS 0.0118 M06-2X 0.37
B1LYP 0.0120 τ-HCTH 0.38
M05 0.0133 M06-L 0.39
τ-HCTH 0.0144 X3LYP 0.40
MPW1B95 0.0145 MOHLYP 0.40
O3LYP 0.0166 B3LYP 0.40
VSXC 0.0181 M06 0.41
M06-2X 0.0194 OV5LYP 0.41
G96LYP 0.0213 OLYP 0.45
MPWLYP1M 0.0218 VSXC 0.51
mPWLYP 0.0248 TPSSVWNS 0.53
HF 0.0248 TPSS 0.53
a Otherwise the same as Tables 7 and 9. Only the top 25

functionals are shown for each property.

Table 15. Balanced Mean Unsigned Errors (BMUEs,
Unitless) for Three Databases of Zn-Ligand Compounds
for DFT Methods (Relativistic)a and NDO Methods

method BMUE method BMUE

M05-2X 0.414 X3LYP 0.527
B97-2 0.439 B3LYP 0.550
PW6B95 0.444 PM3 1.81
mPW1B95 0.457 AM1 1.84
M05 0.458 PM6 1.91
mPW1PW 0.476 MNDO 2.33
PBEh 0.500 MNDO(d) 2.35
B1LYP 0.504

a Relativistic DFT/B2 and other methods tested against relativistic
CCSD(T)/B2 for geometries and bond dissociation energies and
against relativistic CCSD/B2 for dipole moments.
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) 0 give BMUEs above 0.7: TPSS, OLYP, OV5LYP,
VSXC, BP86, TPSSVWN5, OVWN5, OPWL, G96HLYP,
and G96VWN5. The best theory level with no HF exchange
is M06-L, a new local functional which recently performed
best for a broad combination of main-group thermochemistry,
thermochemical kinetics, organometallic/inorganometallic,
and noncovalent interactions as well as for geometric
parameters and vibrational frequencies.59 Because local
functions are considerably less expensive than nonlocal
functionals for large systems, the M06-L local functional has
been suggested59 for calculations involving medium-to-large
systems and/or simulations involving longer time scales.

Incorporating the kinetic energy densityτσ tended to lower
the BMUE. All functionals that includeτσ resulted in BMUEs
better than the mean, and three of the top five functionals
include τσ: M05-2X and M05 in both exchange and
correlation and PW6B95 in correlation. However, including
τσ does not appear to be a requirement for a good Zn
functional; the other two of the top five theory levels do not
incorporate it. In general, HMGGA and MGGA methods
tested favorably for Zn compounds; GGA, GGE, and GGSC
methods were less suitable, and the one LSDA method we
evaluated, SVWN5, was the least favorable functional.

For bond lengths and dipole moments, we also carried out
complete tests of the same density functionals with the
smaller 6-311+G(d,p)124 basis set for H, C, N, O, and S
combined with the Zn basis as used in B1. We found similar
trends to the results presented here, and so these results are
not presented in detail. However, it is useful to summarize
them, and this is done in Table 14, which presents the 25
best methods for geometries and the 25 best methods for
dipole moments. For geometries, some methods actually
perform better with the smaller basis set, but on average the
errors increase by approximately 10%. In contrast the errors
in the dipole moments tend to decrease about 10% with the
smaller basis. This either indicates that the smaller basis is
better balanced or is an encouraging indication that one can
achieve similar accuracy with augmented polarized double-ú
basis sets to what one can obtain with augmented polarized
triple-ú basis sets. (The performance of augmented polarized
double-ú basis sets relative to larger basis sets in DFT
calculations is also discussed elsewhere.100)

4.2. Relativistic Tests. One of the key findings of the
present study is that scalar relativistic effects are not
negligible for Zn compounds. Table 1 shows that when
relativistic effects are added, Zn bond lengths all decrease,
with an average change of 0.011 Å, which is a factor of 1.7
larger than the smallest mean unsigned error in Table 7. This
decrease is as expected, since the direct relativistic effect125

decreases the size of cores andp electrons. Table 3 shows
that relativistic effects on dipole moments are less systematic,
with six dipole moments decreasing by an average of 0.20
D and two increasing by an average of 0.16 D. The Zn-
ligand bond energies are also sensitive to relativistic effects;
seven of them increase by an average of 4.7 kcal/mol, and
the other five decrease by an average of 2.1 kcal/mol. Table
11 shows that these average changes are larger than the mean
unsigned errors in the six best functionals.

We considered relativistic effects for the ten density
functionals that performed best in the tests (discussed in
section 4.1) of nonrelativistic density functional calculations
against nonrelativistic best estimates. Relativistic density
functional calculations (that is, density functional calculations
employing relativistic effective core potentials) were carried
out for these ten functionals and were compared to the
relativistic best-estimate results. These relativistic tests lead
to the same conclusions as the nonrelativistic ones, that is,
the functionals that perform well in the nonrelativistic tests
also perform well in the relativistic ones. Table 15 shows
the performance of DFT and NDO methods against relativ-
istic benchmarks, where both DFT and CCSD(T) calculations
incorporate the multielectron-fit (MEFIT,R) pseudopotential
of Preuss et al. on Zn.95 M05-2X remains the top functional,
with B97-2, PW6B95, mPW1B95, and M05 in second
through fifth places, in that order. The kinetic energy density
τσ is present in four of these five best performing functionals,
and the Hartree-Fock exchange ranges from 21 to 56%.

5. Summary and Concluding Remarks
We have presented nonrelativistic and relativistic databases
of CCSD(T) geometric parameters and bond dissociation
energies and CCSD dipole moments, for a set of Zn model
compounds, and used them as benchmarks to test a variety
of nonrelativistic and relativistic DFT methods and other
molecular orbital methods. While the accuracy of the DFT
methods we tested varies considerably, as measured by
balanced mean unsigned error (BMUE), DFT overall sig-
nificantly outperformed NDO (“semiempirical”) and tight-
binding molecular orbital methods for our compound sets.
Although NDO and tight-binding methods are parametrized
against experimental data and therefore include electron
correlation effects implicitly, it is disappointing that their
overall errors (measured by BMUE against nonrelativistic
benchmarks) are factors of 1.5-2.1 larger than ab initio
Hartree-Fock. Two of the 38 density functionals we tested
also fared worse in the nonrelativistic tests than ab initio
Hartree-Fock. Seventeen density functionals (including five
developed in Minnesota), however, have BMUEs more than
a factor of 2 lower than HF.

Our results indicate that the suitability of a particular
functional for Zn is enhanced by Hartree-Fock (HF)
exchange and often, although not necessarily, by including
the kinetic energy densityτσ. The M05-2X functional has
been recommended for general-purpose, nonmetal thermo-
chemistry, kinetics, and noncovalent interactions.58 Based on
our analysis of nonrelativistic and relativistic mean unsigned
errors (MUEs), in which M05-2X surpasses all other methods
tested, we now recommend it to obtain accurate geometric
parameters, dipole moments, and bond dissociation energies
for Zn centers. For those interested in a broadly applicable
local (X ) 0) functional with reduced computational cost,
perhaps to model larger Zn systems or for simulations of
longer duration, we suggest the M06-L andτ-HCTH func-
tionals, which display the best performance of the 20 local
functionals studied.

Zinc represents an interesting borderline case in the
periodic table:126 it is sometimes considered a transition metal
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and sometimes a main-group element. The present study
indicates that the computational chemistry requirements of
Zn resemble those of the main group rather than the first
transition row, as the best functionals for Zn are those that
generally perform best for the main group.
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Abstract: Ab initio calculations were carried out for isogyric reactions involving the third row

elements, Ga, Ge, As, Se, and Br. Geometries of all the reactants and products were optimized

at the HF, MP2, and B3LYP levels of theory using the 6-31G(d) and 6-31G(d,p) basis sets. For

molecules containing third row elements geometries, frequencies and thermodynamic properties

were calculated using both the standard 6-31G and the Binning-Curtiss (BC6-31G) basis sets.

In order to determine the performance of these basis sets, the calculated thermodynamic

properties were compared to G3MP2 values and where possible to experimental values.

Geometries and frequencies calculated with the standard 6-31G and the BC6-31G basis sets

were found to differ significantly. Frequencies calculated with the standard 6-31G basis set were

generally in better agreement with the experimental values (MAD)40.1 cm-1 at B3LYP/6-31G-

(d,p) and 94.2 cm-1 at MP2/6-31G(d,p) for unscaled frequencies and 29.6 cm-1 and 24.4 cm-1,

respectively, for scaled frequencies). For all the reactions investigated, the thermodynamic

properties calculated with the standard 6-31G basis set were found to consistently be in better

agreement with the G3MP2 and the available experimental results. However, the BC6-31G basis

set performs poorly for the reactions involving both second and third row elements. Since, in

general, the standard 6-31G basis set performs well for all the reactions, we recommend that

the standard 6-31G basis set be used for calculations involving third row elements. Using G3MP2

enthalpies of reaction and available experimental heats of formation (∆Hf), previously unknown

∆Hf for CH3SeH, SiH3SeH, CH3AsH2, SiH3AsH2, CH3GeH3, and SiH3GeH3 were found to be

18.3, 18.0, 38.4, 82.4, 41.9, and 117.4 kJ mol-1, respectively.

1. Introduction
Calculations for compounds containing first and second row
elements are now very common. However, fewer calculations
have been performed for compounds containing third row
main group elements. Such computations require basis sets
that are consistent with those used for the first and second
row elements in order to obtain accurate and reliable results.1

For third row elements the Binning-Curtiss (BC6-31G) basis
set2 has been used in combination with the standard 6-31G
basis set in most electronic structure packages (for example,
Gaussian3 and GAMESS4). However, this basis set does not

actually meet the definition of the standard 6-31G basis set,
but it is constructed from a contraction of the Dunning basis
set.2 The core functions are highly contracted with respect
to those which represent the valence region which are kept
uncontracted in order to maintain flexibility. For example,
for the BC6-31G basis set, the s, p, and d shells consist of
six (821111), four (6311), and one (5) contracted functions,
respectively, which gives a total of 24 basis functions.
Rassolov et al.5 have developed a standard 6-31G basis set
for the third row elements to use in G3 theories,6 where the
3d orbitals are included in the valence space of the third
row elements, resulting in a total of 29 basis functions.
However, very little has been reported7,8 on the use of the

* Corresponding author phone: (709) 737-8609; fax: (709) 737-
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standard 6-31G basis set vs the BC6-31G basis set for lower
levels of theory (e.g., HF, MP2, and B3LYP) for compounds
containing third row elements. No detailed investigation of
geometries and frequencies for compounds containing third
row elements have been performed using the standard 6-31G
basis set. From our previous study,7 thermodynamic proper-
ties for SiH3Br + HCN f SiH3CN + HBr and SiHBr+ H2

f SiH2 + HBr, calculated at HF, MP2, and B3LYP levels
using the standard 6-31G basis set, were found to be in better
agreement with Gaussian-n theories compared to values
obtained using the BC6-31G basis set for bromine with the
same levels of theory. However, in a later study8 on the
reaction of alkenes with bromine, the thermodynamic proper-
ties obtained with the standard 6-31G basis set were found
to agree very well with the values obtained with the BC6-
31G basis set. In this study, we have extended the study to
encompass other third row main group elements. G3MP2
theory9 and experimental results where available are used
in this study in evaluating the performance of the standard
6-31G and the BC6-31G basis sets for compounds containing
first row and second row elements in combination with the
third row elements Ga, Ge, As, Se, and Br. The results are
compared, contrasted, and evaluated at the HF, MP2, and
B3LYP levels of theory.

2. Method
In this study, the performance of the third row basis sets is
evaluated by comparing the thermodynamics properties for
the following isogyric reactions:

where X) Ga, Ge, As, Se, and Br andn ) 2, 3, 2, 1, and
0, respectively, and for

The geometries and frequencies for molecules containing
third row atoms are also investigated. All the electronic
structure calculations were carried out with Gaussian03.3 The
geometries of all reactants and products were fully optimized
at the HF, MP2, and B3LYP levels of theory using both the
6-31G(d) and 6-31G(d,p) basis sets. For third row elements,
Ga, Ge, As, Se, and Br, both the standard 6-31G5 and BC6-
31G2 basis sets are used throughout. Geometries of all the
compounds were optimized ensuring all had their expected
symmetries. From our previous work,7,8 it was found that
the enthalpies of reaction calculated by using G3MP2,9

G3B3,10 and G3MP2B310 levels of theory all agreed to within
5.3 kJ mol-1. Therefore, the G3MP2 level of theory is used
in this study which is expected to adequately reproduce the
experimental data. G3MP2 theory is based on geometry
optimizations performed at the MP2(full) level of theory
using the standard 6-31G(d) basis set for first, second, and
third row elements. In some cases G3MP2 calculations were

also performed using the BC6-31G(d) basis set for third row
elements. For the standard 6-31G(d) basis set, the G3MP2
energy is the summation of the following single point
energies

where

While the G3MP2 energy calculated using the BC6-31G(d)
basis set is given by

where

For all the third row elements the G3MP2Large basis
set,1,11which is not yet incorporated in Gaussian03, was used
for G3MP2 calculations. Frequencies were calculated for all
structures to ensure the absence of imaginary frequencies in
the minima.

3. Results and Discussion
The optimized geometries, frequencies, the thermodynamic
properties of the isogyric reactions, and heats of formation
of some energetically stable compounds containing third row
elements are presented in Tables 1-9.

3.1. Geometries of Molecules Containing Third Row
Elements.Bond lengths and angles calculated at the MP2
and B3LYP levels of theory using the standard 6-31G(d,p)
and BC6-31G(d,p) basis sets for all the structures containing
third row elements are listed in Table 1 along with the
experimental data where available.

The geometric parameters calculated with the standard
6-31G(d,p) and BC6-31G(d,p) basis sets are quite different.
The MP2 bond lengths are always shorter than the B3LYP
bond lengths, and with a few exceptions (∠H-C-H in CH3-
Br, CH3SeH, CH3AsH2, and CH3GaH2 and ∠H-Si-X
(X)Br, Ga) in SiH3Br and SiH3GaH2) the MP2 bond angles
are larger or almost equal to B3LYP angles. However, for
all the levels of theory the agreement with experiment is
similar to that found for compounds containing first and
second row elements.

Table 2 lists the mean absolute deviations (MAD) in bond
lengths and angles from experiment and calculations. A total
of 25 experimental bond lengths and 18 experimental bond
angles were used to calculate the mean absolute deviations
from experiment. A total of 36 bond lengths and 36 bond
angles were used to calculate the mean absolute deviations
between the values calculated at the MP2 and the B3LYP
level of theory using the standard 6-31G(d,p) and BC6-31G-
(d,p) basis sets. For bond lengths the MAD is∼0.012 Å
except for B3LYP/6-31G(d,p) which has a MAD of 0.019
Å. The lowest MAD (0.0118 Å) is given by MP2/6-31G(d).

CH3XHn + HCN f CH3CN + XHn+1 (1)

SiH3XHn + HCN f SiH3CN + XHn+1 (2)

CH3Br + HCl f CH3Cl + HBr (3)

SiH3Br + HCl f SiH3Cl + HBr (4)

PH2Br + HCN f PH2CN + HBr (5)

E[QCISD(T)/6-31G(d)]+ ∆EMP2 + ∆E(SO)+
E(HLC) + E(ZPE)

(∆EMP2) ) [E(MP2/G3MP2Large)]- [E(MP2/6-31G(d))]

E[QCISD(T)/BC6-31G(d)]+ ∆EMP2 + ∆E(SO)+ E

(HLC) + E(ZPE)

(∆EMP2) ) [E(MP2/G3MP2Large)]-
[E(MP2/BC6-31G(d))]

Calculations for Third Row Elements J. Chem. Theory Comput., Vol. 4, No. 1, 200887



Table 1. Optimized and Experimental Structural Parameters for Compounds Containing Third Row Elementst

MP2 B3LYP

molecules
point
group

geometric
parameter /6-31G(d,p) /BC6-31G(d,p) ∆s /6-31G(d,p) /BC6-31G(d,p) ∆s exptl

HBr C∞v H-Br 1.4075 1.4057 0.0018 1.4269 1.4171 0.0098 1.4144,a 1.4129b

SeH2 C2v Se-H 1.4527 1.4480 0.0047 1.4738 1.4614 0.0124 1.4600,a 1.4605b

∠H-Se-H 91.6 91.5 0.1 91.2 91.0 0.2 90c

AsH3 C3v As-H 1.5042 1.5043 -0.0001 1.5271 1.5181 0.009 1.5108,a 1.5187b

∠H-As-H 93.0 92.2 0.8 91.9 91.2 0.7 90c

GeH4 Td Ge-H 1.5219 1.5285 -0.0066 1.5369 1.5306 0.0063 1.5151,a 1.5293,b 1.514d

∠H-Ge-H 109.5 109.5 0.0 109.5 109.5 0.0 109.5c

GaH3 D3h Ga-H 1.5579 1.5785 -0.0206 1.5700 1.5733 -0.0033 1.560,a 1.5505e

∠H-Ga-H 120.0 120.0 0.0 120.0 120.0 0.0
PH2Br Cs P-Br 2.2474 2.2440 0.0034 2.2775 2.2612 0.0163 2.234,f 2.230f

P-H 1.4067 1.4063 0.0004 1.4248 1.4242 0.0006 1.425,f 1.412f

Br-H 2.7894 2.7847 0.0047 2.8183 2.8106 0.0077
∠H-P-Br 96.8 96.7 0.1 96.4 96.8 -0.4 96.1f

∠H-P-H 93.5 93.4 0.1 92.2 92.1 0.1 92.4f

SiHBr Cs Si-Br 2.2529 2.2470 0.0059 2.2809 2.2601 0.0208 2.237,g 2.231h

Si-H 1.5086 1.5082 0.0004 1.5308 1.5309 -0.0001 1.518,g 1.561h

∠H-Si-Br 94.5 94.6 -0.1 94.2 94.6 -0.4 93.4g

CH3Br C3v C-Br 1.9424 1.9480 -0.0056 1.9658 1.9625 0.0033 1.939,i 1.934,j 1.933k

C-H 1.0832 1.0834 -0.0002 1.0879 1.0878 0.0001 1.113,i 1.082,j 1.086k

∠H-C-Br 108.1 107.8 0.3 107.7 107.7 0.0 107.7j

∠H-C-H 110.8 111.1 -0.3 111.2 111.2 0.0 111.2,j 111.17k

SiH3Br C3v Si-Br 2.2294 2.2249 0.0045 2.2484 2.2299 0.0185 2.212,l 2.210m

Si-H 1.4690 1.4686 0.0004 1.4808 1.4808 0.0 1.474,l 1.487m

∠H-Si-Br 108.4 108.4 0.0 108.5 108.7 -0.2 108.2l

∠H-Si-H 110.5 110.5 0.0 110.4 110.2 0.2
CH3SeH Cs C-Se 1.9610 1.9503 0.0107 1.9812 1.9633 0.0179 1.976n

C-H 1.0896 1.0899 -0.0003 1.0909 1.0912 -0.0003 1.10n

Se-H 1.4730 1.4799 -0.0069 1.4827 1.4848 -0.0021 1.48n

∠H-C-H 110.7 110.9 -0.2 110.9 110.9 0.0 111n

∠C-Se-H 95.0 95.8 -0.8 94.9 95.6 -0.7 95n

SiH3SeH Cs Si-Se 2.2909 2.2895 0.0014 2.3086 2.2963 0.0123
Si-H 1.4816 1.4810 0.0006 1.4851 1.4846 0.0005
Se-H 1.4741 1.4812 -0.0071 1.4829 1.4849 -0.0020
∠H-Si-H 110.2 110.3 -0.1 109.9 109.9 0.0
∠Si-Se-H 93.9 94.5 -0.6 93.6 94.2 -0.6

CH3AsH2 Cs C-As 1.9798 1.9607 0.0191 1.999 1.983 0.016 1.92ï

C-H 1.0924 1.0928 -0.0004 1.0920 1.0916 0.0004 1.09ï

As-H 1.5248 1.5354 -0.0106 1.5300 1.5205 0.0095
∠H-C-H 109.4 109.2 0.2 109.6 109.9 -0.3
∠C-As-H 96.0 96.5 -0.5 95.6 95.1 0.5

SiH3AsH2 Cs Si-As 2.3705 2.3672 0.0033 2.3949 2.3698 0.0251
Si-H 1.4838 1.4836 0.0002 1.4873 1.4857 0.0016
As-H 1.5243 1.5357 -0.0114 1.5347 1.5186 0.0161 1.52ï

∠H-Si-H 109.1 109.2 -0.1 108.8 108.8 0.0 109.28ï

∠Si-As-H 93.6 93.8 -0.2 92.8 93.5 -0.7 94ï

CH3GeH3 C3v C-Ge 1.9540 1.9474 0.0066 1.9692 1.9515 0.0177 1.9490,p 1.9453q

C-H 1.0873 1.0874 -0.0001 1.0924 1.0924 0.0 1.0921,p 1.083q

Ge-H 1.5264 1.5324 -0.0060 1.5414 1.5361 0.0053 1.5285,p 1.529q

∠H-C-H 108.7 108.8 -0.1 108.7 108.7 0.0 108.841,p 108.4q

∠C-Ge-H 110.3 110.6 -0.3 110.2 110.6 -0.4 109.3q

∠H-Ge-H 108.5 108.3 0.2 108.4 108.3 0.1 108.776p

SiH3GeH3 C3v Si-Ge 2.3838 2.3828 0.0010 2.3987 2.3795 0.0192 2.36r

Si-H 1.4761 1.4758 0.0003 1.4872 1.4868 0.0004 1.49r

Ge-H 1.5252 1.5337 -0.0085 1.5400 1.5372 0.0028 1.53r

∠Si-Ge-H 110.7 110.7 0.0 110.8 110.8 0.0
∠H-Si-H 108.8 108.9 -0.1 108.6 108.6 0.0 108.8r

∠H-Ge-H 108.2 108.2 0.0 108.1 108.1 0.0 108.8r

CH3GaH2 Cs C-Ga 1.9686 1.9874 -0.0188 1.9796 1.9771 0.0025
Ga-H 1.5636 1.5840 -0.0204 1.5769 1.5800 -0.0031
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For bond angles the MAD (18 of bond angles) is 0.5-0.6.
Changes in bond lengths with a change in basis set are
generally larger at B3LYP (0.0078 Å) than at MP2
(MAD)0.0057 Å). For example in HBr, the difference in
bond lengths calculated at B3LYP/6-31G(d,p) and B3LYP/
BC6-31G(d,p) is 0.0098 Å, while the difference at MP2/6-
31G(d,p) and MP2/BC6-31G(d,p) is 0.0018 Å. However, the
difference due to a change of basis set at the MP2 level for
X-H bond distances in GaH3, CH3SeH, SiH3SeH, SiH3GeH3,
CH3GaG2, and SiH3GaH2 and C-X bond distances in CH3-
Br and CH3AsH2 are larger than the respective B3LYP
values.

3.2. Frequencies of Molecules Containing Third Row
Elements. Frequencies for the molecules containing third
row elements at MP2/6-31G(d,p), MP2/BC6-31G(d,p),
B3LYP/6-31G(d,p), and B3LYP/BC6-31G(d,p) are listed in
Table 3 along with the experimental frequencies where
available. MAD values for the frequencies are given in Table
4. A total of 145 frequencies of compounds containing third

row elements were used to calculate the MAD between
calculated frequencies and 73 to calculate the MAD between
experimental and calculated frequencies. In most cases the
B3LYP/6-31G(d,p) frequencies are in better agreement with
experimental frequencies (Tables 3 and 4), with a MAD of
40.1 cm-1 compared to 57.8 cm-1 for B3LYP/BC6-31G-
(d,p) and 94.2 cm-1 and 105.4 cm-1 for MP2/6-31G(d,p)
and MP2/BC6-31G(d,p), respectively. Therefore, for both
MP2 and B3LYP the standard 6-31G basis set gives the best
agreement, and overall the B3LYP with the standard 6-31G-
(d,p) basis set performs the best in calculating frequencies
for molecules containing third row elements. B3LYP fre-
quencies are found to be slightly more sensitive to the basis
set than MP2 frequencies, i.e., the differences between the
frequencies calculated at B3LYP/6-31G(d,p) and B3LYP/
BC6-31G(d,p),∆ν(B3LYP), are generally larger than the
differences between the frequencies calculated at MP2/6-
31G(d,p) and MP2/BC6-31G(d,p),∆ν(MP2) (Table 3). For
unscaled frequencies the MAD between MP2/6-31G(d,p) and
MP2/BC6-31G(d,p) is 16.4 cm-1, while between B3LYP/
6-31G(d,p) and B3LYP/BC6-31G(d,p) the MAD is 20.3
cm-1. The MAD between the MP2/6-31G(d,p) and B3LYP/
6-31G(d,p) is 58.9 cm-1, while the MAD between the MP2/
BC6-31G(d,p) and B3LYP/BC6-31G(d,p) is 51.8 cm-1, when
unscaled frequencies are used. Standard frequency scaling
factors for compounds containing first and second row
elements are available in the literature.12,13 The MAD for
scaled frequencies using the standard scale factors are also
given in Table 4. Scaling improves the frequencies signifi-
cantly at all levels of theory and basis sets. After scaling
MP2/6-31G(d,p) now has the lowest MAD (24.4 cm-1) from
experiment. For B3LYP/6-31G(d,p) and B3LYP/BC6-31G-
(d,p) the MAD are lowered to 29.6 and 29.3 kJ mol-1,
respectively, when frequencies are scaled. The MAD between
B3LYP/6-31G(d,p) and B3LYP/BC6-31G(d,p) is 19.5 cm-1,
while MP2/6-31G(d,p) and MP2/BC6-31G(d,p) is 15.3 cm-1.

Table 1. (Continued)

MP2 B3LYP

molecules
point
group

geometric
parameter /6-31G(d,p) /BC6-31G(d,p) ∆s /6-31G(d,p) /BC6-31G(d,p) ∆s exptl

C-H 1.0919 1.0928 -0.0009 1.0974 1.0980 -0.0006
∠C-Ga-H 120.6 120.9 -0.3 120.6 121.0 -0.4
∠H-Ga-H 118.8 118.2 0.6 118.7 118.0 0.7
∠Ga-C-H 108.6 109.1 -0.5 108.6 108.9 -0.3
∠Ga-C-H 111.9 112.2 -0.3 111.8 112.1 -0.3
∠H-C-H 107.5 107.1 0.4 107.5 107.2 0.3
∠H-C-H 109.3 108.9 0.4 109.5 109.1 0.4

SiH3GaH2 Cs Si-Ga 2.4212 2.4199 0.0013 2.4315 2.4004 0.0311
Ga-H 1.5626 1.5830 -0.0204 1.5762 1.5789 -0.0027
Si-H 1.4808 1.4816 -0.0008 1.4922 1.4929 -0.0007
∠Si-Ga-H 121.0 121.5 -0.5 121.0 121.6 -0.6
∠H-Ga-H 118.1 116.9 1.2 117.9 116.7 1.2
∠Ga-Si-H 108.8 108.8 0.0 108.7 108.6 0.1
∠Ga-Si-H 112.0 112.1 -0.1 112.4 112.6 -0.2
∠H-Si-H 107.8 107.7 0.1 107.5 107.4 0.1
∠H-Si-H 108.3 108.3 0.0 108.2 108.1 0.1

a Reference 14. b Reference 15. c Reference 16. d Reference 17. e Reference 18. fReference 19. g Reference 20. h Reference 21. i Reference
22. j Reference 23. k Reference 24. l Reference 25. m Reference 26. n Reference 27. ï Reference 28. p Reference 29. q Reference 30. r Reference
31. s ∆ represents the difference between parameters calculated with the standard 6-31G(d,p) and the BC6-31G(d,p) basis sets. t Bond lengths
are in Å and angles are in deg.

Table 2. Mean Absolute Deviations for Bond Lengths and
Anglesa

comparison
MAD

(bond lengths)
MAD

(angles)

experiment vs
MP2/6-31G(d,p) 0.0118 0.6
MP2/BC6-31G(d,p) 0.0124 0.6
B3LYP/6-31G(d,p) 0.0187 0.5
B3LYP/BC6-31G(d,p) 0.0124 0.5

MP2/6-31G(d,p) vs
MP2/BC6-31G(d,p) 0.0057 0.3

B3LYP/BC6-31G(d,p) vs
B3LYP/6-31G(d,p) 0.0078 0.3

a Mean absolute deviations from experiment were calculated from
25 bond lengths and 18 bond angles, while 36 bond lengths and 36
bond angles were used to calculate the MAD between the calculated
bond lengths and angles. Bond lengths are in Å, and angles are in
deg.
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Table 3. Calculated and Experimental Frequencies (in cm-1) for Compounds Containing Third Row Elementsa

MP2 B3LYP

molecules point group freq /6-31G(d,p) /BC6-31G(d,p) ∆νm /6-31G(d,p) /BC6-31G(d,p) ∆νm expt

HBr C∞v ν1 2759.3 2765.6 -6.3 2622.9 2663.3 -40.4 2558.5b

SeH2 C2v ν1 1125.1 1162.3 -37.2 1074.5 1131.5 -57.0 1034.2c

ν2 2544.3 2595.3 -51.0 2395.5 2449.6 -54.1 2344.5c

ν3 2564.0 2611.8 -47.8 2412.3 2466.2 -53.9 2357.8c

AsH3 C3v ν1 980.8 986.7 -5.9 946.3 968.7 -22.4 906.0c

ν2(e) 1079.2 1116.0 -36.8 1031.1 1071.7 -40.6 1003c

ν3 2315.1 2380.0 -64.9 2182.4 2261.6 -79.2 2116.1c

ν4(e) 2332.4 2395.0 -62.6 2200.7 2282.3 -81.6 2123.0c

GeH4 Td ν1(t2) 861.3 851.3 10.0 823.6 820.1 3.5 819d

ν2(e) 965.1 956.3 8.8 928.9 935.3 -6.4 931d

ν3 2245.8 2332.0 -86.2 2138.3 2252.0 -113.7 2114d

ν4(t2) 2247.4 2340.1 -92.7 2148.7 2273.6 -124.9
GaH3 D3h ν1 750.4 730.1 20.3 718.4 711.3 7.1 717.4e,f

ν2(e) 792.5 784.3 8.2 762.5 776.5 -14.0 758.7e,g

ν3(e) 2033.8 2039.8 -6.0 1966.6 2018.2 -51.6 1923.2e,g

ν4 2038.2 2049.9 -11.7 1961.3 2012.2 -50.9
PH2Br Cs ν1 412.8 423.9 -11.1 383.0 398.7 -15.7 399.79h

ν2 818.7 821.4 -2.7 784.9 794.2 -9.3 794.90h

ν3 863.9 869.8 -5.9 819.1 831.1 -12.0 812.46h

ν4 1165.6 1165.8 -0.2 1135.5 1138.1 -2.6
ν5 2524.0 2522.6 1.4 2389.0 2387.2 1.8
ν6 2537.7 2537.2 0.5 2401.9 2400.9 1.0

SiHBr Cs ν1 422.7 432.4 -9.6 394.9 410.1 -15.2 424.3i

ν2 815.7 820.7 -5.0 774.7 785.3 -10.6 553.6i

ν3 2164.4 2164.8 -0.4 2039.7 2038.1 1.6 1970.9i

CH3Br C3v ν1 639.0 632.0 7.0 588.4 592.8 -4.4 617,j 611k,c

ν2(e) 1009.3 1003.9 5.4 968.1 967.6 0.5 974j

ν3 1405.2 1394.9 10.3 1345.8 1343.2 2.6 1333j

ν4(e) 1536.5 1540.4 -3.9 1487.7 1490.5 -2.8 1472j

ν5 3177.4 3173.9 3.5 3097.2 3096.1 1.1 3082,j 2972k

ν6(e) 3304.2 3302.5 1.7 3211.4 3210.0 1.4 3184j

SiH3Br C3v ν1 441.9 448.1 -6.2 414.9 429.2 -14.3 430c

ν2(e) 655.4 668.4 -13 628.9 643.8 -14.9 633c

ν3 991.4 1000.1 -8.7 944.5 957.9 -13.4 930c

ν4(e) 999.0 1001.4 -2.4 954.9 955.2 -0.3 950c

ν5 2356.2 2360.1 -3.9 2253.3 2254.7 -1.4 2200c

ν6(e) 2374.5 2378.1 -3.6 2271.7 2271.8 -0.1 2196c

CH3SeH Cs ν1 212.0 229.3 -17.3 198.3 181.2 17.1 145l

ν2 614.0 606.1 7.9 572.8 571.1 1.7 584l

ν3 744.9 764.2 -19.3 715.1 744.3 -29.2 712l

ν4 961.1 950.2 10.9 919.5 914.7 4.8 921l

ν5 1046.8 1052.0 -5.2 1009.7 1022.8 -13.1 980l

ν6 1386.1 1379.2 6.9 1329.8 1329.7 0.1 1288l

ν7 1530.0 1536.9 -6.9 1485.1 1490.4 -5.3 1433l

ν8 1543.0 1548.0 -5.0 1494.6 1498.5 -3.9 1447l

ν9 2535.1 2582.3 -47.2 2378.9 2425.4 -46.5 2330l

ν10 3163.0 3162.5 0.5 3083.6 3082.4 1.2 2955l

ν11 3277.1 3277.2 -0.1 3182.4 3181.0 1.4 3027l

ν12 3284.0 3286.7 -2.7 3190.6 3190.6 0.0 3032l

SiH3SeH Cs ν1 184.4 175.2 9.2 175.9 102.1 73.8
ν2 412.3 420.6 -8.3 386.7 399.8 -13.1
ν3 529.2 554.5 -25.3 507.6 537.4 -29.8
ν4 626.4 641.3 -14.9 598.2 615.0 -16.8
ν5 779.1 802.4 -23.3 754.6 784.4 -29.8
ν6 972.9 981.9 -9.0 924.4 937.2 -12.8
ν7 982.0 983.2 -1.2 939.5 938.2 1.3
ν8 1014.8 1020.1 -5.3 970.9 976.5 -5.6
ν9 2336.4 2337.6 -1.2 2235.1 2235.3 -0.2
ν10 2346.3 2347.0 -0.7 2244.5 2243.6 0.9
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Table 3. (Continued)

MP2 B3LYP

molecules point group freq /6-31G(d,p) /BC6-31G(d,p) ∆νm /6-31G(d,p) /BC6-31G(d,p) ∆νm exptl

ν11 2361.3 2365.0 -3.7 2260.4 2262.6 -2.2
ν12 2527.4 2561.9 -34.5 2378.8 2409.5 -30.7

CH3AsH2 Cs ν1 206.2 238.4 -32.2 195.4 224.1 -28.7
ν2 589.7 590.0 -0.3 554.1 555.5 -1.4
ν3 667.2 699.3 -32.1 651.3 680.6 -29.3
ν4 703.5 726.0 -22.5 678.6 701.7 -23.1
ν5 966.8 959.3 7.5 932.3 930.3 2.0
ν6 999.6 1015.4 -15.8 964.8 985.2 -20.4
ν7 1057.8 1097.6 -39.8 1009.9 1050.9 -41.0
ν8 1356.8 1351.4 5.4 1305.4 1305.9 -0.5
ν9 1530.6 1542.1 -11.5 1488.4 1497.6 -9.2
ν10 1534.9 1544.3 -9.4 1490.2 1498.4 -8.2
ν11 2297.1 2365.1 -68.0 2157.8 2227.9 -70.1
ν12 2309.7 2374.2 -64.5 2172.4 2241.9 -69.5
ν13 3152.3 3154.0 -1.7 3070.9 3071.2 -0.3
ν12 3259.2 3262.0 -2.8 3157.7 3160.3 -2.6
ν13 3272.0 3278.0 -6.0 3178.2 3179.4 -1.2

SiH3AsH2 Cs ν1 162.4 143.9 18.5 135.7 128.6 7.1
ν2 376.6 379.7 -3.1 350.0 357.1 -7.1
ν3 462.5 500.8 -38.3 444.1 485.8 -41.7
ν4 481.2 515.3 -34.1 458.9 497.9 -39
ν5 704.6 748.5 -43.9 681.4 732.1 -50.7
ν6 758.9 805.7 -46.8 726.0 778.3 -52.3
ν7 950.3 956.1 -5.8 902.7 912.6 -9.9
ν8 990.0 992.7 -2.7 950.0 951.6 -1.6
ν9 1000.3 1002.2 -1.9 958.4 959.8 -1.4
ν10 1046.4 1084.8 -38.4 996.8 1046.5 -49.7
ν11 2298.1 2324.2 -26.1 2173.2 2225.7 -52.5
ν12 2312.1 2338.8 -26.7 2187.5 2238.3 -50.8
ν13 2322.5 2341.8 -19.3 2223.6 2240.6 -17.0
ν12 2337.6 2368.8 -31.2 2239.1 2250.8 -11.7
ν13 2341.3 2376.5 -35.2 2241.1 2261.6 -20.5

CH3GeH3 C3v ν1 177.9 193.0 -15.1 158.3 183.0 -24.7 157c

ν2(e) 506.9 496.3 10.6 493.4 490.1 3.3 506c

ν3 616.0 637.3 -21.3 586.0 613.9 -27.9 602c,m

ν4 882.4 872.4 10.0 848.1 845.4 2.7 843c,m

ν5(e) 886.7 876.8 9.9 857.4 857.5 -0.1 848c

ν6(e) 942.0 934.0 8.0 905.1 913.7 -8.6 900c

ν7 1340.7 1332.6 8.1 1297.0 1295.4 1.6 1254c,m

ν8(e) 1525.5 1528.4 -2.9 1484.0 1486.7 -2.7 1428c

ν9(e) 2222.4 2312.4 -90 2126.0 2244.6 -118.6 2085c,m

ν10 2223.9 2317.3 -93.4 2129.3 2259.2 -129.9 2084c

ν11 3147.0 3147.2 -0.2 3063.8 3065.2 -1.4 2938c,m

ν12(e) 3255.7 3257.0 -1.3 3153.4 3154.9 -1.5 2997c

SiH3GeH3 C3v ν1 122.2 122.3 -0.1 109.2 131.5 -22.3 144n

ν2 370.1 356.6 13.5 348.4 340.1 8.3 312,n 318m

ν3(e) 376.7 369.5 7.2 370.2 371.0 -0.8 371n

ν4(e) 627.1 619.5 7.6 600.1 602.5 -2.4 550n

ν5 825.3 818.1 7.2 794.2 796.2 -2.0 780,n 785.2m

ν6(e) 926.6 916.0 10.6 889.3 899.1 -9.8 881n

ν7 948.9 943.9 5.0 904.6 905.9 -1.3 890,n 890.3m

ν8(e) 997.6 997.2 0.4 955.5 955.4 0.1 930n

ν9 2218.7 2294.8 -76.1 2124.5 2221.3 -96.8 2052,n 2076.6m

ν10(e) 2223.9 2305.7 -81.8 2134.1 2235.2 -101.1 2069n

ν11 2319.3 2319.2 0.1 2222.5 2235.7 -13.2 2151,n 2163.1m

ν12(e) 2334.0 2334.5 -0.5 2236.9 2254.8 -17.9 2160n

CH3GaH2 Cs ν1 10.5 36.4 -25.9 37.3 30.2 7.1
ν2 430.2 417.5 12.7 418.2 419.2 -1.0
ν3 519.2 514.1 5.1 501.8 498.7 3.1

Calculations for Third Row Elements J. Chem. Theory Comput., Vol. 4, No. 1, 200891



It is interesting to note that after scaling the MAD are now
similar for all levels of theory and basis sets.

The frequency scaling factors for first and second row
elements are 0.9608 and 0.9370 at B3LYP/6-31G(d,p) and
MP2/6-31G(d,p), respectively.12,13Using the 73 experimental
frequencies available for compounds containing third row
elements scaling factors were calculated by dividing the
experimental frequencies with the corresponding calculated

frequencies and then taking their average. The scale factors
were found to be 0.9408 and 0.9246 at B3LYP/6-31G(d,p)
and B3LYP/BC6-31G(d,p), respectively, and 0.8982 and
0.8926 at MP2/6-31G(d,p) and MP2/BC6-31G(d,p), respec-
tively. These scaling factors indicate that in general frequen-
cies calculated for compounds involving third row elements
tend to be generally higher than those calculated for
compounds containing first and second row elements.

3.3. Thermodynamic Properties for the Isogyric Reac-
tions Involving Third Row Elements. The thermodynamic
properties for reactions 1 and 2 are listed in Table 5.

For all X, X ) Ga, Ge, As, Se, and Br, reaction 1 is
exothermic with G3MP2 enthalpies of-2.3, -9.2, -29.6,
-46.7, and-56.0 kJ mol-1, respectively. From Figure 1, it
is interesting to note that all levels predict that the enthalpy
of reaction becomes more exothermic in going from Ga to
Br. The G3MP2 free energies of reaction for X) Ge, As,
Se and Br are exergonic with values of-9.2,-29.9,-44.5,
and-54.3 kJ mol-1, while for X ) Ga the reaction is slightly
endergonic with a G3MP2 free energy of 5.0 kJ mol-1. For
X ) Ga, Ge, and As, reaction 2 is exothermic with G3MP2
enthalpies of-23.8, -25.3, and-14.2 kJ mol-1, respec-
tively, while for X ) Se and Br, reaction 2 is endothermic
with ∆H of 13.0 and 43.6 kJ mol-1, respectively. From
Figure 2, we see that in this case the enthalpy of reaction
becomes more endothermic in going from Ga to Br for all

Table 3. (Continued)

MP2 B3LYP

molecules point group freq /6-31G(d,p) /BC6-31G(d,p) ∆νm /6-31G(d,p) /BC6-31G(d,p) ∆νm exptl

ν4 586.4 597.3 -10.9 560.0 578.9 -18.9
ν5 769.1 758.1 11.0 750.4 748.9 1.5
ν6 805.2 792.5 12.7 773.9 781.2 -7.3
ν7 821.1 806.0 15.1 800.0 792.4 7.6
ν8 1299.5 1293.8 5.7 1256.1 1254.0 2.1
ν9 1510.7 1510.3 0.4 1470.2 1468.6 1.6
ν10 1520.7 1518.9 1.8 1477.0 1475.4 1.6
ν11 2004.7 2019.9 -15.2 1933.4 1993.3 -59.9 1892.0g

ν12 2012.1 2030.1 -18.0 1935.6 1994.3 -58.7 1898.0g

ν13 3127.6 3123.8 3.8 3039.5 3038.6 0.9
ν14 3221.7 3214.6 7.1 3115.0 3111.7 3.3
ν15 3253.5 3245.4 8.1 3148.2 3144.9 3.3

SiH3GaH2 Cs ν1 6.6 13.0 -6.4 29.5 35.6 -6.1
ν2 336.7 326.1 10.6 318.6 323.9 -5.3
ν3 339.8 334.8 5.0 325.9 332.5 -6.6
ν4 407.3 394.2 13.1 379.8 381.0 -1.2
ν5 573.2 562.7 10.5 544.7 549.4 -4.7
ν6 618.5 604.9 13.6 591.3 591.5 -0.2
ν7 781.7 772.5 9.2 753.0 769.5 -16.5
ν8 933.1 929.5 3.6 884.3 888.8 -4.5
ν9 991.1 990.0 1.1 947.7 946.1 1.6
ν10 999.3 998.7 0.6 956.5 956.1 0.4
ν11 2006.3 2023.9 -17.6 1932.6 1994.8 -62.2
ν12 2009.2 2026.2 -17 1940.7 2001.5 -60.8
ν13 2297.2 2293.0 4.2 2198.4 2195.5 2.9
ν14 2314.2 2311.0 3.2 2216.5 2215.2 1.3
ν15 2321.0 2318.3 2.7 2224.2 2222.9 1.3

a Calculated frequencies are not scaled. b Reference 32. c Reference 33. d Reference 34. e Reference 35. f Reference 36. g Reference 37.
h Reference 38. i Reference 20. j Reference 39. k Reference 22. l Reference 27. m Reference 40. n Reference 31(b). m ∆ represents the difference
between frequencies calculated with the standard 6-31G(d,p) and the BC6-31G(d,p) basis sets.

Table 4. Mean Absolute Deviations for Frequencies (in
cm-1)a

comparison
(unscaled frequencies) MAD

comparison
(scaled frequencies) MAD

experiment vs experiment vs
MP2/6-31G(d,p) 94.2 MP2/6-31G(d,p) 24.4
MP2/BC6-31G(d,p) 105.4 MP2/BC6-31G(d,p) 35.4
B3LYP/6-31G(d,p) 40.1 B3LYP/6-31G(d,p) 29.6
B3LYP/BC6-31G(d,p) 57.8 B3LYP/BC6-31G(d,p) 29.3

MP2/6-31G(d,p) vs MP2/6-31G(d,p) vs
MP2BC/6-31G(d,p) 16.4 MP2BC/6-31G(d,p) 15.3
B3LYP/6-31G(d,p) 58.9 B3LYP/6-31G(d,p) 22.7

B3LYP/BC6-31G(d,p) vs B3LYP/BC6-31G(d,p) vs
B3LYP/6-31G(d,p) 20.3 B3LYP/6-31G(d,p) 19.5
MP2/BC6-31G(d,p) 51.8 MP2/BC6-31G(d,p) 18.9
a A total of 73 frequencies were used to calculate the MAD between

experimental and calculated frequencies, and 145 frequencies were
used to calculate the MAD between the calculated frequencies.
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levels of theory. Similarly, the free energies are exergonic
for X ) Ga, Ge, and As, with values of-19.3,-27.5, and
-17.3 kJ mol-1, respectively, and endergonic for X) Se
and Br, with values of 11.7 and 43.8 kJ mol-1 at G3MP2.

For the reactions with CH3Br and SiH3Br, the G3MP2
enthalpies and free energies are calculated using both
the standard 6-31G(d) and BC6-31G(d) basis sets. The
G3MP2 energies calculated using the standard 6-31G(d)

Table 5. Thermodynamic Properties for the Reactions 1 and 2 (in kJ mol-1) at 298.15 K

CH3GaH2 + HCN f CH3CN + GaH3 SiH3GaH2 + HCN f SiH3CN + GaH3

6-31G(d) BC6-31G(d) 6-31G(d) BC6-31G(d)

level ∆E ∆H ∆G ∆E ∆H ∆G ∆(∆H)a ∆E ∆H ∆G ∆E ∆H ∆G ∆(∆H)a

HF -22.0 -25.5 -18.6 -11.5 -14.7 -8.3 -10.8 -29.0 -36.4 -29.5 -24.4 -31.6 -24.6 -4.8
MP2(P)b -4.1 -6.8 -0.9 0.2 -2.3 2.7 -4.5 -22.6 -28.4 -21.5 -22.4 -25.6 -28.4 -2.8
B3LYP(P)b -14.5 -17.9 -11.8 -8.1 -8.7 -11.1 -9.2 -17.9 -24.3 -18.9 -16.1 -22.3 -17.5 -2.0
G3MP2 -0.8 -2.3 5.0 -22.3 -23.8 -19.3

CH3GeH3 + HCN f CH3CN + GeH4 SiH3GeH3 + HCN f SiH3CN + GeH4

6-31G(d) BC6-31G(d) 6-31G(d) BC6-31G(d)

level ∆E ∆H ∆G ∆E ∆H ∆G ∆(∆H)a ∆E ∆H ∆G ∆E ∆H ∆G ∆(∆H)a

HF -24.3 -27.4 -27.8 -5.3 -8.7 -9.3 -18.7 -31.1 -36.5 -36.4 -14.7 -19.7 -19.6 -16.8
MP2(P)b -11.1 -13.4 -14.1 1.4 -0.4 -1.3 -13.0 -24.6 -28.5 -28.6 -16.7 -19.7 -19.7 -8.8
B3LYP(P)b -22.2 -25.6 -25.6 -10.2 -13.0 -13.5 -12.6 -21.6 -26.4 -26.0 -14.1 -18.0 -17.7 -8.4
G3MP2 -8.6 -9.2 -9.2 -24.4 -25.3 -27.5

CH3AsH2 + HCN f CH3CN + AsH3 SiH3AsH2 + HCN f SiH3CN + AsH3

6-31G(d) BC6-31G(d) 6-31G(d) BC6-31G(d)

level ∆E ∆H ∆G ∆E ∆H ∆G ∆(∆H)a ∆E ∆H ∆G ∆E ∆H ∆G ∆(∆H)a

HF -41.2 -45.4 -46.0 -25.5 -30.3 -31.3 -15.1 -19.4 -24.9 -25.6 12.0 5.2 4.3 -30.1
HF(P)b -40.6 -44.6 -45.2 -30.8 -34.7 -35.7 -9.9 -37.7 -24.8 -25.4 3.7 -1.8 -2.4 -23.0
MP2 -29.8 -33.2 -34.0 -15.9 -19.9 -21.1 -13.3 -9.7 -14.0 -14.9 19.2 13.7 12.5 -27.7
MP2(P)b -29.2 -32.3 -33.0 -20.0 -23.0 -24.2 -9.3 -11.8 -15.8 -16.7 10.0 5.8 4.9 -21.6
B3LYP -41.8 -45.7 -46.1 -27.0 -31.4 -32.2 -14.3 -14.3 -19.2 -19.3 14.1 7.9 7.3 -27.1
B3LYP(P)b -39.1 -43.2 -43.6 -30.0 -33.8 -34.6 -9.4 -12.3 -17.3 -17.3 8.3 3.1 2.7 -20.4
G3MP2 -29.6 -29.6 -29.9 -14.1 -14.2 -17.3

CH3SeH + HCN f CH3CN + SeH2 SiH3SeH + HCN f SiH3CN + SeH2

6-31G(d) BC6-31G(d) 6-31G(d) BC6-31G(d)

level ∆E ∆H ∆G ∆E ∆H ∆G ∆(∆H)a ∆E ∆H ∆G ∆E ∆H ∆G ∆(∆H)a

HF -50.9 -56.6 -54.5 -41.5 -47.3 -45.4 -9.3 15.9 8.8 10.1 46.9 39.2 40.3 -30.4
HF(P)b -53.5 -59.0 -56.9 -49.1 -54.2 -52.3 -4.8 12.9 6.0 7.3 37.1 30.4 31.6 -24.4
MP2 -39.8 -44.5 -42.7 -33.1 -37.7 -36.0 -6.8 22.7 16.8 17.7 50.7 44.2 45.0 -27.4
MP2(P)b -42.9 -47.3 -45.4 -39.9 -43.9 -42.2 -3.4 17.8 12.2 13.1 40.4 34.9 35.9 -22.7
B3LYP -49.4 -54.6 -52.4 -40.6 -45.5 -43.3 -9.1 15.6 9.1 10.5 43.4 36.7 38.2 -27.6
B3LYP(P)b -49.6 -55.0 -52.7 -45.6 -50.5 -47.9 -4.5 14.9 8.3 9.8 36.3 30.2 32.7 -21.9
G3MP2 -47.1 -46.7 -44.5 12.3 13.0 11.7

CH3Br + HCN f CH3CN + HBr SiH3Br + HCN f SiH3CN + HBre

6-31G(d) BC6-31G(d) 6-31G(d) BC6-31G(d)

level ∆E ∆H ∆G ∆E ∆H ∆G ∆(∆H)a ∆E ∆H ∆G ∆E ∆H ∆G ∆(∆H)a

HF -49.3 -55.4 -53.6 -45.2 -51.4 -49.6 -4.0 58.2 50.1 50.6 82.0 73.5 73.9 -23.4
HF(P)b -56.2 -62.0 -60.1 -55.6 -61.2 -59.3 -0.8 51.0 43.3 43.9 71.0 63.2 63.6 -19.9
MP2 -42.4 -47.3 -45.8 -41.0 -45.8 -44.3 -1.5 58.4 51.8 51.9 79.6 72.6 72.6 -20.8
MP2(P)b -50.5 -55.1 -53.5 -51.0 -55.4 -53.8 0.3 49.5 43.1 43.3 68.7 62.1 62.2 -19.0
B3LYP -48.8 -54.1 -52.2 -44.5 -49.9 -48.0 -4.2 50.7 43.6 44.1 72.1 64.6 64.9 -21.0
B3LYP(P)b -52.9 -58.1 -56.2 -52.2 -57.2 -55.3 -0.9 46.2 39.3 39.8 63.8 56.8 57.2 -17.5
G3MP2 -56.9 -56.0 -54.3 -57.1 -56.1 -54.5 0.1 42.0 43.6 43.8 40.4 42.0 42.1 1.6
exptl -63.2c 29.6d

a ∆(∆H) represents the difference between enthalpies of reaction calculated with the standard 6-31G and the BC6-31G basis sets. b Represents
6-31G(d,p) basis set. c The value is calculated from experimental ∆Hf of CH3Br, HCN, CH3CN, and HBr given in Table 9. d The value is calculated
from experimental ∆Hf of SiH3Br, HCN, SiH3CN, and HBr given in Table 9. e The thermodynamic properties are taken from ref 7.
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and the BC6-31G(d) basis set differ by only 0.2 kJ mol-1

for the reaction with CH3Br and 1.6 kJ mol-1 with SiH3Br
(Table 5). Experimental enthalpies of reaction estimated from
the heats of formation of the individual species (Table 9, to
be discussed) are only available for the reaction with CH3-
Br and SiH3Br. The G3MP2 enthalpies for both these two
reactions agree reasonably well with experiment deviating
by 7 kJ mol-1 and 14 kJ mol-1, respectively. Although in
some reactions addition of p-polarization functions to
hydrogen gives better thermodynamic values, overall polar-
ization functions have little effect on the thermodynamics.

Figures 3 (reaction 1) and 4 (reaction 2) represent the
differences between the G3MP2 enthalpies from the enthal-
pies calculated at the MP2 and B3LYP levels of theory using
both the standard 6-31G(d,p) and BC6-31G(d,p) basis sets.
From Figure 3, it is clear that when X) Br, the error in the
enthalpies calculated at the MP2 and B3LYP levels of theory
is small for both the basis sets. This is similar to our previous
investigation on the bromination of alkenes.8 However, the
errors in enthalpies calculated at B3LYP/6-31G(d,p) are
slightly larger for X ) Ga, Ge, As, and Se. For all X in
reaction 2, the enthalpies of reaction calculated at both the

Figure 1. Enthalpies of reaction 1 calculated at different levels of theory with the standard 6-31G(d,p) basis set.

Figure 2. Enthalpies of reaction 2 calculated at different levels of theory with the standard 6-31G(d,p) basis set.
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MP2 and B3LYP levels of theory using the standard 6-31G-
(d,p) basis set are in excellent agreement with the G3MP2
enthalpies (all within 5 kJ mol-1), while the BC6-31G(d)
basis set performs especially poorly for X) Ge, As, Se,
and Br. It is important to mention here that for the reaction
of HCN with SiH3AsH2 the enthalpy calculated by the BC6-
31G basis set is found to be endothermic, while with standard

6-31G, it is found to be exothermic in agreement with the
G3MP2 level of theory (Table 5).

Both reactions 1 and 2 involved HCN as one of the
reactants. To see the effect of second row elements on
reaction thermodynamics, two more reactions, reaction 3
(CH3Br + HCl f CH3Cl + HBr) and reaction 4 (SiH3Br +
HCl f SiH3Cl + HBr) are considered. The thermodynamic

Figure 3. Difference between enthalpies of reaction 1 calculated at the MP2 and B3LYP levels of theory with G3MP2.

Figure 4. Difference between enthalpies of reaction 2 calculated at the MP2 and B3LYP levels of theory with G3MP2.
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properties for reactions 3 and 4 are listed in Table 6, and
the plots of reaction enthalpies vs theory/basis set are given
in Figure 5 for reaction 3 and Figure 6 for reaction 4. G3MP2
enthalpies calculated with the standard 6-31G(d) basis set
are in excellent agreement with the G3MP2 enthalpies
calculated with the BC6-31G(d) basis set, differing by only
0.1 kJ mol-1 for reaction 3 and 1.6 kJ mol-1 for reaction 4.
The G3MP2 enthalpies were also found to agree well with
experiment differing by no more than 5 kJ mol-1. The
G3MP2 enthalpies calculated with both the standard 6-31G-
(d) and BC6-31G(d) basis set are found to be endothermic
for reaction 3 and exothermic for reaction 4. For reaction 3,
the HF, MP2, and B3LYP enthalpies calculated using the
standard 6-31G and the BC6-31G basis set are in excellent
agreement, differing by no more than 4.3 kJ mol-1. In this
case, all enthalpies of reaction are in good agreement with
both the G3MP2 and experimental values. However, for

reaction 4, the differences between the enthalpies of reaction
calculated with the standard 6-31G and the BC6-31G basis
set are large, ranging from 17.5 to 23.4 kJ mol-1. The
reaction enthalpies calculated with the standard 6-31G basis
set are found to be exothermic (except for MP2/6-31G(d,p)),
while the reaction enthalpies obtained by BC6-31G are
endothermic for all levels of theory and basis sets investigated
(Table 6 and Figure 6). In this case, the enthalpies calculated
with the BC6-31G basis set are in poor agreement with both
the G3MP2 and the experimental values. Therefore, the
choice of basis set is extremely important for reactions
involving both second and third row elements.

For reactions 2 and 4, both involving Si, the standard
6-31G basis set predicts better reaction enthalpies and free
energies than the BC6-31G basis set. It would be interesting
to see if the same result is found for other second row
elements. Therefore, thermodynamic properties for reaction

Table 6. Thermodynamic Properties for the Reactions 3 and 4 (in kJ mol-1) at 298.15 K

CH3Br + HCl f CH3Cl + HBr SiH3Br + HCl f SiH3Cl + HBr

6-31G(d) BC6-31G(d) 6-31G(d) BC6-31G(d)

level ∆E ∆H ∆G ∆E ∆H ∆G ∆(∆H)a ∆E ∆H ∆G ∆E ∆H ∆G ∆(∆H)a

HF 1.0 0.5 -2.4 5.1 4.5 1.7 -4.0 -5.4 -6.7 -6.8 18.4 16.7 16.5 -23.4
HF(P)b 6.0 5.4 2.6 6.6 6.2 3.4 -0.8 -1.2 -2.4 -2.4 18.7 17.5 17.4 -19.9
MP2 2.5 2.1 -0.7 3.9 3.6 0.8 -1.5 -1.7 -2.9 -2.9 19.5 17.9 17.8 -20.8
MP2(P)b 8.9 8.4 5.6 8.4 8.1 5.3 0.3 4.0 2.9 2.9 23.2 21.8 21.8 -18.9
B3LYP 2.3 1.9 -0.9 6.6 6.2 3.3 -4.3 -5.2 -6.1 -6.1 16.2 14.9 14.7 -21.0
B3LYP(P)b 7.0 6.5 3.7 7.7 7.4 4.7 -0.9 -1.3 -2.3 -2.3 16.3 15.2 15.1 -17.5
G3MP2 11.3 11.1 8.3 11.2 11.0 8.2 0.1 -2.4 -2.7 -2.7 -4.0 -4.3 -1.7 -1.6
exptl 6.5c -7.7d

a ∆(∆H) represents the difference between enthalpies of reaction calculated with the standard 6-31G and the BC6-31G basis sets. b Represents
6-31G(d,p) basis set. c The value is calculated from the experimental ∆Hf of CH3Br, HCl, CH3Cl, and HBr given in Table 9. d The value is
calculated from the experimental ∆Hf of SiH3Br, HCl, SiH3Cl, and HBr given in Table 9.

Figure 5. Enthalpy of reaction for CH3Br + HCl f CH3Cl + HBr calculated at different levels of theory and basis sets.
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5, PH2Br + HCN f PH2CN + HBr, are calculated using
both the standard 6-31G and the BC6-31G basis sets, and
the values are given in Table 7. The plot of reaction
enthalpies vs level of theory/basis set is shown in Figure 7.
Differences in enthalpies calculated with the standard 6-31G
and the BC6-31G basis sets range from 9.3 to 15.4 kJ mol-1

depending on the level of theory. Like reaction 4, SiH3Br,
the reaction enthalpies and free energies calculated with the
standard 6-31G basis set is in better agreement with G3MP2
values (Table 7 and Figure 7).

Mean Absolute Deviations (MAD) of the Reaction
Enthalpies. The mean absolute deviations for the reaction
enthalpies involving first and third row elements, reaction
1, and for reactions involving first, second, and third row
elements, reactions 2 and 5, are calculated at different levels
of theory and basis sets from G3MP2 enthalpies, and the
values are given in Table 8. The MAD for enthalpies of
reactions involving first and third row elements are not

significantly affected by the change of basis set, ranging from
2.6 to 13.5 kJ mol-1 for the standard 6-31G basis set and
1.8 to 5.8 kJ mol-1 for the BC6-31G basis set. The MAD
are slightly higher at B3LYP/6-31G(d,p) and HF/6-31G(d).
On the other hand, the MAD for the reaction enthalpies
involving first, second, and third row elements (reactions 2
and 5) are significantly larger for the BC6-31G basis set at
all levels of theory investigated, ranging from 10.1 to 18.4
kJ mol-1. The MAD for the standard 6-31G basis set range
from only 2.3 to 8.5 kJ mol-1 depending on the level of
theory. Therefore, although the Binning-Curtiss and standard
basis sets perform almost identically for reactions involving
only first and third row elements, the standard basis set
performs much better for reactions involving first, second,
and third row elements. These results indicate that the BC6-
31G basis set for third row elements is improperly balanced
relative to the standard 6-31G basis set used for first and
second row elements. The imbalance would result in basis
set superposition error and basis set incompleteness error.
The extra basis functions (3d) for the standard basis set are
evidently playing a significant role, especially when bonding
between second and third row elements is present.

3.4. Exploring Heats of Formation (∆H f). No experi-
mental or theoretical heats of formation (∆Hf) have been
reported for CH3SeH, SiH3SeH, CH3AsH2, SiH3AsH2, CH3-
GeH3, and SiH3GeH3. In this study, the enthalpies for
reactions 1 and 2 for all X, X) Ga, Ge, As, Se, and Br,
have been obtained. The∆Hf values obtained in this study
are given in Table 9. From the G3MP2 enthalpies of reaction
and the most recent and reliable experimental heats of
formation for CH3CN, SiH3CN, SeH2, AsH3, GeH4, HCN,
∆Hf for CH3SeH, SiH3SeH, CH3AsH2, SiH3AsH2, CH3GeH3,
and SiH3GeH3 are calculated to be 18.3, 18.0, 38.4, 82.4,

Figure 6. Enthalpy of reaction for SiH3Br + HCl f SiH3Cl + HBr calculated at different levels of theory and basis sets.

Table 7. Thermodynamic Properties for the Reaction 5 (in
kJ mol-1) at 298.15 K

6-31G(d) BC6-31G(d)

level ∆E ∆H ∆G ∆E ∆H ∆G ∆(∆H)a

HF 18.8 11.4 12.8 34.4 26.8 28.0 -15.4
HF(P)b 11.9 4.9 6.3 23.7 16.7 18.0 -11.8
MP2 15.0 9.0 10.0 29.4 23.1 24.0 -14.1
MP2(P)b 6.3 0.6 1.6 18.6 12.8 13.8 -12.2
B3LYP 17.1 10.7 12.0 30.2 23.5 24.7 -12.8
B3LYP(P)b 12.9 6.5 7.9 22.1 15.8 17.1 -9.3
G3MP2 4.5 5.6 6.8

a ∆(∆H) represents the difference between enthalpies of reaction
calculated with the standard 6-31G and the BC6-31G basis sets.
b Represents the 6-31G(d,p) basis set.
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41.9, and 117.4 kJ mol-1, respectively. Heats of formation
were also calculated for HCN, CH3CN, SiH3CN, HBr, CH3-
Br, SiH3Br, CH3Cl, HCl and SiH3Cl, for which reliable∆Hf

values are available for comparison. The∆Hf for CH3Br,
HCN, CH3CN, and HBr are calculated using the G3MP2
enthalpy of reaction for CH3Br + HCN f CH3CN + HBr
(∆H)-56.0 kJ mol-1 at G3MP2) and the most recent
experimental heats of formation for CH3Br, HCN, CH3CN,
and HBr (given in Table 9). The resulting∆Hf values are
-37.8, 131.8, 73.9, and-36.4 kJ mol-1, respectively, all
values being in excellent agreement with experiment. Simi-
larly, heats of formation for HCN, SiH3Br, SiH3CN, and HBr
are calculated using the enthalpy of reaction for SiH3Br +
HCN f SiH3CN + HBr (43.6 kJ mol-1 at G3MP2), along
with experimental heats of formation for HCN, SiH3Br, HBr,
and SiH3CN. The∆Hf values are again in excellent agree-
ment with experiment. Heats of formation of CH3Br, HBr,
SiH3Br, CH3Cl, HCl, and SiH3Cl are also calculated using
the enthalpy of reaction 3, CH3Br + HCl f CH3Cl + HBr
(11.1 kJ mol-1 at G3MP2), and reaction 4, SiH3Br + HCl

f SiH3Cl + HBr (-2.7 kJ mol-1 at G3MP2) and by using
the experimental heats of formation of CH3Br, HCl, CH3Cl,
HBr, SiH3Br, and SiH3Cl. The ∆Hf values obtained by
reaction 3 is in excellent agreement with experiment, while
the values obtained by using reaction 4 is also in reasonable
agreement with experiment differing by no more than 4.8
kJ mol-1 from experiment. Therefore, these results provide

Figure 7. Enthalpy of reaction for PH2Br + HCN f PH2CN + HBr calculated at different levels of theory and basis sets.

Table 8. Mean Absolute Deviations for the Enthalpies of
Reaction Involving First and Third Row Elements, Reaction
1, and First, Second, and Third Row Elements, Reactions
2 and 5 (in kJ mol1)

reaction 1 reactions 2 and 5

theory 6-31G(d) BC6-31G(d) 6-31G(d) BC6-31G(d)

HF 13.5 3.8 8.5 18.4
HF(P)b 6.7 3.6 3.1 10.1
MP2 2.9 5.8 2.6 17.6
MP2(P)b 2.6 3.8 2.6 12.5
B3LYP 5.2 1.8 2.3 14.1
B3LYP(P)b 11.2 3.9 2.4 11.1

a MAD is calculated from G3MP2 enthalpies. b Represents the
6-31G(d,p) basis set.

Table 9. Heats of Formation (∆Hf) (in kJ mol-1) at 298.15
Ka

molecules experiment present work molecules
present
worka

CH3Br -38.0 ( 1.3b -37.8,n -38.7p CH3SeH 18.3
HCN 131.67c 131.8,n 131.9o SiH3SeH 18.0
CH3CN 74.04 ( 0.37d 73.9n CH3AsH2 38.4
HBr -36.2e,f -36.4,n -36.5,o SiH3AsH2 82.4

-35.5,p -31.4q

SiH3Br -78.24g -78.0,o -83.0q CH3GeH3 41.9
SiH3CN 133.5h 130.1o SiH3GeH3 117.4
SeH2 29.2 ( 0.8i

AsH3 66.4 ( 1j,k

GeH4 90.3 ( 2l,m

CH3Cl -83.68g -83.01p

HCl -92.31g -93.0,p -97.1q

SiH3Cl -141.84g -137.1q

a See text for explanation. b Reference 41, c Reference 42. d Ref-
erence 43. e Reference 44. f Reference 45. g Reference 46. h Refer-
ence 7 (obtained from experimental heats of formation and calculated
heat of reaction). i Reference 47. j Reference 48. k Reference 49.
l Reference 50. m Reference 51. n Calculated using the enthalpy of
reaction for CH3Br + HCN f CH3CN + HBr and experimental ∆Hf

values for CH3Br, HCN, CH3CN, and HBr. ï Calculated using the
enthalpy of reaction for SiH3Br + HCN f SiH3CN + HBr and
experimental ∆Hf values for SiH3Br, HCN, HBr, and SiH3CN. p Cal-
culated using the enthalpy of reaction for CH3Br + HCl f CH3Cl +
HBr and experimental ∆Hf values for CH3Br, HCl, CH3Cl, and HBr.
q Calculated using the enthalpy of reaction for SiH3Br + HCl f SiH3Cl
+ HBr and experimental ∆Hf values for SiH3Br, HCl, SiH3Cl, and HBr.
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further evidence that the G3MP2 enthalpies are very reliable
for the reactions studied and proved to be useful in predicting
the performance of the standard 6-31G and BC6-31G basis
sets.

4. Conclusions
Computations were carried out in order to compare the
standard and BC6-31G basis sets for thermodynamic proper-
ties, geometries, and frequencies. The performance of the
standard 6-31G basis set compared to the BC6-31G basis
set for a series of isogyric reactions containing third row
elements, Ga, Ge, As, Se, and Br, was evaluated using
G3MP2 theory. A comparison of the thermodynamic proper-
ties calculated with the standard 6-31G and the BC6-31G
basis set with the G3MP2 energies revealed that for
compounds with first row elements and third row elements,
both basis sets perform equally well, while compounds with
second and third row elements or with first, second, and third
row, elements, the standard 6-31G basis set showed the best
performance. Optimized geometries were also tabulated and
compared for the standard 6-31G(d,p) and BC6-31G(d,p)
basis sets. Geometric parameters calculated with both the
basis sets were found to agree well with experiment, with
errors similar to those found for compounds containing first
and second row elements. Frequencies were also compared
to experiment, and the unscaled B3LYP/6-31G(d,p) frequen-
cies were found to be in better agreement with experiment
(Table 4). MP2/6-31G(d,p) were also found to predict better
frequencies than MP2/BC6-31G(d,p). Scaling the frequencies
with standard scale factors lowers the MAD for all levels
and basis sets studied suggesting that the standard scale
factors for first and second row elements may also be used
for third row elements. Calculations using the G3MP2 theory
proved useful in determining the accuracy of the levels of
theory and basis sets. When studying reactions involving
heavy atoms, the choice of the basis set is crucial. As
illustrated in this study, enthalpies of reaction can vary up
to 30.4 kJ mol-1 at the B3LYP and MP2 levels of theory
which in several cases may lead to predicting a reaction is
endothermic when it is actually exothermic and vice versa.
Since the standard 6-31G basis set performs very well with
all the reactions, we recommend that the standard 6-31G
basis set be used for calculations involving third row
elements. It has also been shown that reaction enthalpies
calculated at G3MP2, along with existing experimental data,
can be used to calculate reliable heats of formation.
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Abstract: The fragrance terpene geraniol autoxidizes upon air exposure and forms a mixture

of oxidation products, some of which are skin sensitizers. Reactions of geraniol with O2 have

been studied with DFT (B3LYP) and the computational results compared to experimentally

observed product ratios. The oxidation is initiated by hydrogen abstraction, forming an allylic

radical which combines with an O2 molecule to yield an intermediate peroxyl radical. In the

subsequent step, geraniol differs from previously studied cases, in which the radical chain reaction

is propagated through intermolecular hydrogen abstraction. The hydroxy-substituted allylic peroxyl

radical prefers an intramolecular rearrangement, producing observable aldehydes and the

hydroperoxyl radical, which in turn can propagate the radical reaction. Secondary oxidation

products like epoxides and formates were also considered, and plausible reaction pathways for

formation are proposed.

Introduction
Contact allergy, caused by skin-penetrating compounds able
to react with macromolecules in the skin to form antigens,
is one of the most common health problems in the industrial-
ized world. In Western Europe, an estimated 10-15% of
the normal population suffers from contact allergies that upon
prolonged or repeated contact with the offending agent result
in allergic contact dermatitis. Fragrance compounds com-
monly cause contact allergies. Fragrances are ubiquitous in
our environment, and not only cosmetics and toiletries
contain fragrance materials but almost all household and
occupational products are scented. The allergens are not
always the fragrance compounds themselves, but rather
degradation products formed upon prolonged storage in
contact with air, for example, in scented products.

As part of a long-term project of identifying compounds
that are not allergenic themselves but can form allergenic

compounds upon air exposure, it has been shown how some
common fragrance terpenes form allergenic hydroperoxides
and secondary oxidation products upon exposure to air. The
oxidation products were isolated and identified, and their
allergenic effects were determined experimentally.1-4

In the mechanism for autoxidation of the unsaturated
terpene linalool (1, Figure 1), oxidation was found to occur
by abstraction of an allylic hydrogen, followed by combina-
tion with O2 and radical chain propagation to yield allylic
hydroperoxides as primary oxidation products.5

A recent study investigated the bimolecular reaction
between an alkene and triplet oxygen, requiring a spin-state
change to reach the singlet products.6 However, in general,
the formation of hydroperoxides via autoxidation is believed5

to proceed through a radical chain process according to the
following steps:

* Corresponding author e-mail: pon@chem.gu.se.
† Department of Chemistry, Physical Chemistry.
‡ Department of Chemistry, Dermatochemistry and Skin Allergy.
§ Department of Chemistry, Organic Chemistry.

Initiation: RH f R‚ (step 1)

Propagation: R‚ + O2 f ROO‚ (step 2a)

ROO‚ + R′H f ROOH+ R′‚ (step 2b)

Termination 2R′‚ f nonradical products (step 3)
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Here 2R′‚ can be any combination of the radicals formed.
We note that no step in the chain process requires a change
of spin. The exothermic addition of oxygen to the radical,
step 2a, is believed to occur without any barrier on the
potential energy surface (i.e., it is diffusion-controlled,Vide
infra); hence, the rate and selectivity determining step of
the propagation is the hydrogen atom abstraction, step 2b.

Geraniol (2, trans-3,7-dimethyl-2,6-octadiene-1-ol), an
isomer of1, is an important fragrance terpene, widely used
because of its fresh flowery odor. A recent investigation7 of
the air oxidation of geraniol (2, Figure 2) revealed that the
reaction is substantially more complex than that of1, forming
a mixture of products that include hydrogen peroxide, the
aldehydes geranial (3) and neral (4), and epoxygeraniol (5),
in addition to a hydroperoxide (6) related to those found in
the linalool study,4 and its secondary degradation product,
the allylic alcohol7. Furthermore, the presence of geranyl
formate (8) in the oxidation mixture must be rationalized
by a postoxidation bimolecular transformation, since the
additional carbon in the formate moiety has to come from
another, degraded geraniol molecule. Studies of the skin-
sensitizing potency according to the local lymph node assay
in mice showed that air-exposed geraniol as well as several
of the isolated oxidation products have a sensitizing potency
significantly higher than that of pure geraniol, demonstrating
the need for an increased understanding of the oxidation of
fragrance terpenes.7

In an earlier investigation of geraniol, it could be con-
cluded that the most easily abstracted allylic hydrogen is the
oneR to the hydroxyl, leading to the preferential formation
of radicalA (Figure 3).7

RadicalD is less stable thanA, but some products derived
from radicalD were still observed (6 and7, Figure 2). The
three other radicals,B, C, andE, are even higher in energy,
and indeed no oxidation products derived from any of these
could be identified.7 The formation of products fromD is
analogous to the previously investigated oxidation of linalool
(1)3-5 and will not be further discussed here. Instead, we
will concentrate on the possible further reactions of radical
A.

In this work, we report our theoretical investigation of the
mechanism of oxidation of geraniol (2). In the current work,
we focus upon the primary oxidation, which follows a radical
chain process, forming the primary oxidation products in the
presence of triplet oxygen. Secondary oxidation products are
then formed in closed-shell processes for which there are
ample precedents in the literature.

Computational Methods
All calculations were performed using unrestricted density
functional theory (DFT) with the B3LYP functional8 as
implemented in Gaussian 03.9 We utilized two different basis
sets, optimizing all structures first with 6-31G(d,p), and then
using the larger 6-311+G(2d,p) basis set. Harmonic vibra-
tional frequencies were obtained for all structures (and both
basis sets) in order to ensure the nature of the stationary
points (saddle point or minimum), and also to estimate the
thermodynamic contribution to the enthalpy and free energy
at T ) 298 K. Energies are reported as enthalpies at 0 K
and at 298 K, and free energies at 298 K.

Results and Discussion
In the investigation of the formation and further reactions
of radical A (Figure 3), we have chosen to use a smaller
and less flexible molecule, 3-methyl-2-buten-1-ol (9, Figure
4), as the model for geraniol (2). This model includes all
the features of2 necessary for reproducing the stability of
A, that is, the trisubstituted alkene and the allylic hydroxy
functionality, but excludes the conformationally flexible
isoprenoid moiety that is expected to stay constant in all
investigated reactions. Depending on the conformation of
the alcohol in the hydrogen abstraction step, two radicals

Figure 1. Linalool (1) and two hydroperoxides identified after
air oxidation.

Figure 2. Geraniol (2) with identified air oxidation products.

Figure 3. Illustration of five radicals that can be formed by
hydrogen abstraction from geraniol. Enthalpy changes (in kcal
mol-1) for forming the various radicals are given relative to
radical A.
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can be formed,10a and10b (Figure 4). For steric reasons,
we expect the trans form,10a, to dominate, but both forms,
and their potential interconversion pathways, have been
included in the study.

No transition states (TSs) could be found for the first
propagation step, the combination of radicals10a and10b
with O2. To verify that the addition is indeed barrier-less,
we performed a geometry optimization starting with an O2

molecule positioned perpendicular to theπ-face of radical
10a, with the closest oxygen-carbon distance set to 3 Å. In
this optimization, the trust radius was strongly reduced, to
0.05 b, to ensure that the optimization sequence did not
accidentally skip over a low barrier. Each step of the
optimization was inspected, verifying that the steps were
small and the energy decrease monotonous. The optimization
proceeded as expected, and yielded structure12, showing
that the addition can occur without an energy barrier.

The addition products11and12can potentially equilibrate
by reverting to free O2 and allylic radicals10. However, a
direct [2,3] shift is also possible and was found to have an
activation energy lower than that required for the dissociation
of O2. The transition state for direct conversion between11a
and 12 is depicted in Figure 5. As can be seen, the TS is
very symmetric, with forming and breaking C-O bonds of
almost equal length. Interestingly enough, the TS structure
is also very similar to one of the intermediate points in the
slow optimization used to verify the barrier-less nature of
the O2 addition, indicating that it is also a potential branching
point for the O2 addition reaction.

In the last propagation step, peroxyl radicals11/12abstract
a hydrogen from another species in solution, forming a new
radical and the hydroperoxy species13and14. Each of these
are expected to be in equilibrium with aldehyde15 and
hydrogen peroxide, which has also been detected in the

Figure 4. Propagation steps using the geraniol model 9.

Figure 5. B3LYP/6-311+G(2d,p) TS for direct interconversion
between 11a and 12.

Figure 6. Alternative fragmentation paths for peroxyl radicals
11b and 12.

Table 1. Calculated Standard Enthalpy Changes and
Standard Gibbs Free Energy Changes in kcal mol-1 for the
Reactions in Figure 4

6-31G(d,p) 6-311+G(2d,p)

∆H0° ∆H298° ∆G298° ∆H0° ∆H298° ∆G298°

R‚ + O2 f ROO‚ (step 2a)

10a + O2 f 11a -16 -14 -2 -12 -13 0

10a + O2 f 12 -21 -18 -7 -16 -17 -5

10b + O2f 11b -23 -20 -7 -16 -17 -4

10b + O2 f 12 -22 -20 -8 -17 -18 -7

ROO‚ + RH f ROOH + R‚ (step 2b)

11a f 13a -2 -3 -3 -4 -3 -4

12 f 14 -2 -3 -4 -5 -4 -6

11b f 13b 0 0 -1 -2 -1 -3

ROOH f aldehyde + H2O2

13a f 15 + H2O2 5 3 -10 -1 0 -13

14 f 15 + H2O2 10 8 -4 4 5 -7

13b f 15 + H2O2 9 6 -8 0 1 -13

Table 2. Calculated Activation Energies, in kcal mol-1

6-31G(d,p) 6-311+G(2d,p)

TS ∆H0° ∆H298° ∆G298° ∆H0° ∆H298° ∆G298°

11b f 16 6 5 6 6 6 7
12 f 15 3 3 3 4 4 4
11a f 12 10 10 10 9 9 9
11b f 12 17 17 15 15 15 16
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autoxidation sample. The calculated reaction energies and
barriers for these steps are shown in Tables 1 and 2,
respectively.

Analyzing first the effect of the two different basis sets,
we can see that there are numerical differences, but that the
qualitative picture is the same in both cases. Moreover, the
change follows the expected trend. The basis superposition
error (BSSE), which can be significant with smaller basis
sets, will favor association, since a more compact arrange-
ment of atoms allows the virtual orbitals from one fragment
to fill out deficiencies in the orbital description of the
neighboring fragment. Thus, with the larger basis set, the
reaction between O2 and allyl radicals becomes less exo-
thermic, the proton-transfer steps are virtually unaffected,
and the dissociation steps become more exothermic. We also
want to point out that the BSSE to some extent compensates
for an error in B3LYP, namely, the lack of proper treatment
of dispersion forces. We are not aware of a full investigation
of the relative magnitude of these effects, but in our
experience with similar methods, a modest basis set fre-
quently gives better agreement with experiments than the
more extensive one. To conclude, we cannot be certain which
of the two sets of data is in best agreement with experimental
values, but it is reassuring that both sets give the same
qualitative results. Since this is the case, we will perform
additional calculations using the cheaper of the two methods,
B3LYP/6-31G(d,p).

Looking at the two propagation steps, the initial combina-
tion of the allylic radical with O2 (step 2a) occurs without a
barrier on the potential energy surface (Vide supra). For step
2b, the abstraction of a hydrogen atom from another molecule
in solution forming hydroperoxides, we have investigated a
model peroxyl radical, CH3OO‚, reacting with the geraniol
model 9 to form 10, at the B3LYP/6-31G(d,p) level. For
this step, we find an enthalpy of activation of 7 kcal mol-1,
and a free energy of activation of 18 kcal mol-1. Thus, the
reversion of step 2a, which is endergonic by 0-8 kcal
mol-1,10 is competitive with propagation. Peroxyl radical11a
has no alternative forward reaction and may either revert to
10aor isomerize to12 to a significant extent. On the other
hand,11band12can follow alternative fragmentation paths
due to the spatial proximity of the hydroxy group (Figure
6), in a heteroatom analogy to the known fragmentation of
the ethylperoxyl radical.11 As seen in the corresponding free
energy surface, Figure 7, the intramolecular hydrogen transfer
in 11b to produce peroxy enolyl radical16 is virtually
isoergonic, with a moderate barrier. Intermediate16can then

eliminate a hydroperoxyl radical in an exergonic process, to
form aldehyde15. For the hydroxy-substituted peroxyl
radical12, the intramolecular hydrogen transfer and elimina-
tion are concerted, forming the hydroperoxyl radical and free
aldehyde with a very low barrier (Figure 8).

Overall, fragmentation via12 and intramolecular elimina-
tion is the preferred path, but as can be seen in Figure 7 and
Table 2, when formed, peroxyl radical11b will prefer
elimination via16 over reversion to allylic radical10 or
isomerization to12.

In the full system starting from geraniol (2), we must also
consider cis/trans isomerization, giving neral (4) in addition
to geranial (3). In Figure 9, we have summarized the expected
pathways and indicated intermediates where isomerization
around the former double bond is feasible. For one peroxyl
radical where no intramolecular hydrogen abstraction is
possible (corresponding to11a in Figure 4), an equilibrium
back to free O2 and the allylic radical or a [2,3] shift is
expected. Dotted arrows indicate intermolecular hydrogen
abstraction followed by closed-shell fragmentation, as out-
lined in Figure 4. This process is expected to be disfavored
compared with reversal and branching to a pathway allowing
intramolecular hydrogen abstraction and fragmentation.

The hydroperoxyl radical produced by the fragmentations
depicted in Figures 6 and 9 can participate in the radical
chain propagation by abstracting a hydrogen atom from a
molecule of geraniol (2). However, the reactive hydroperoxyl
radical can also add to the double bond of geraniol, as shown
for the model compound9 in Figure 10. The addition is
somewhat endergonic, but the subsequent ring closure to
epoxy alcohol 17 is strongly exergonic. The liberated
hydroxyl radical is highly reactive and will propagate the
radical chain process by the abstraction of a hydrogen atom
from a molecule of geraniol. Epoxygeraniol (5, corresponding
to model compound17) has been detected in the autoxidation
mixture.7

Figure 7. Free energy surface for the fragmentations depicted in Figure 6.

Figure 8. B3LYP/6-311+G(2d,p) TS for fragmentation of 12
to 15.
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Finally, we shall discuss the formation of geranyl formate
(8). This product differs from the other oxidation products
in that it contains an additional carbon atom, which must
have come from the fragmentation of another molecule of
geraniol. We have not located any radical process leading
to formates, but instead we speculate that it can be formed
from perhydrate14, which can be formed either directly in
the radical chain process as depicted in Figure 4 or by the
reversible addition of hydrogen peroxide to either geranial
(3) or neral (4), all of which are present in the autoxidation
mixture. We note that14 is reminiscent of the text-book
intermediate in the Baeyer-Villiger reaction. Under acidic
conditions,14 is expected to fragment by cleavage of the
O-O bond with simultaneous migration of the vinyl moiety,
forming a vinyl formate (18). The latter has not been
detected, but under the slightly acidic conditions of the

autoxidation mixture, it would be expected to transesterify
irreversibly with a geraniol molecule, whereupon the pro-
duced enol would tautomerize to C9 aldehyde19 (Figure 11).

A weakness of the current proposal is that aldehyde19,
or indeed any C9 products, has so far not been identified in
the autoxidation mixture. However, geraniol is the only
source of carbon in the experiment, and thus the only possible
precursor for the formate moiety in8. In a separate
experiment, a sample of authentic aldehyde19 was added
to geraniol and subjected to the normal oxidation procedure,
as described previously.7 The concentration of19 slowly
decreased and could, after a while, not be detected anymore.
As negative evidence, this should not be taken as mechanistic

Figure 9. Expected open-shell autoxidation pathways starting from geraniol, 2.

Figure 10. Epoxidation of geraniol model 9 by hydroperoxyl
radical, with enthalpies and free energies (both at 298 K, the
latter in italic) for all species.

Figure 11. Formation of 8 through Baeyer-Villiger rear-
rangement and transesterification.
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proof, but it at least indicates that the absence of19 in the
autoxidation mixture does not disprove the mechanism
depicted in Figure 11. However, other Baeyer-Villiger-type
mechanisms can also be proposed, since both hydrogen
peroxide and hydroperoxides are present together with
aldehydes in the autoxidation mixture.

Conclusions
The autoxidation products of the monoterpene geraniol (2)
have been rationalized computationally by investigation of
plausible radical chain reactions for a model system. Both
propagation steps in the accepted mechanism, radical chain
transfer and the addition of O2, were found to be exergonic,
in contrast to the recently investigated isomeric linalool
system.5 However, in addition to the normal chain transfer
mechanism, the geraniol-derived peroxyl radicals can also
undergo intramolecular hydrogen abstraction followed by
fragmentation, liberating a hydroperoxyl radical as an
alternative chain transfer agent. The latter process was found
to be favored compared to the classical intermolecular
hydrogen abstraction. Either process gives as a side product
the observed hydrogen peroxide. Some of the located
intermediates allow cis-trans isomerization of the original
geraniol double bond, rationalizing the observation of both
geranial and neral as oxidation products.

Secondary oxidation products like epoxides and formates
were also considered, and plausible reaction pathways for
the formation of both have been advanced, in the former
case based on the oxidation of geraniol by a hydroperoxyl
radical, in the latter case through a Baeyer-Villiger rear-
rangement of one of the oxidation intermediates.
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Abstract: New CHARMM force field (FF) parameters are developed for nitro compounds,

referred to here as C27rn, for subsequent use in molecular dynamics (MD) simulations. The

nonbonded terms are adjusted to best fit densities and hydration energies of nitropropane and

nitrobenzene. High-level quantum mechanical calculations are used to obtain accurate confor-

mational energies of nitroalkanes and nitrobenzene and to adjust the torsional potential of the

CHARMM FF. For nitroalkanes, the calculated gauche (g) conformer of the C-C-C-N torsion

is more stable than trans (t). Consequently, nitropropane MD simulations with C27rn result in

74% population of this g conformer. The C27rn FF is in excellent agreement with experiment

for various bulk (density, isothermal compressibility, and heat of vaporization) and interfacial

(surface tension) properties of nitropropane, nitrobutane, and nitrobenzene. MD simulations with

the OPLS-AA FF for nitropropane and nitrobenzene result in similar property predictions as

C27rn, except a reduced stability of the C-C-C-N g conformer.

1. Introduction
Compounds containing one or more nitro groups are com-
monly used as explosives,1 organic solvents,2,3 herbicides,4

pesticides,4 and drugs.5,6 A few specific examples of these
nitro compounds are described briefly as motivation for their
general importance. In 1947, the first broad spectrum
antibiotic (chloramphenicol) was discovered.6 This early
antibiotic contains a nitro group attached to a benzene ring
but is not used extensively because of bacterial resistance
and certain undesirable side effects. As another example, pure
nitrobenzene or 2-nitrophenyln-octyl ether are widely used
as organic solvents.2,3 These compounds are prominent in
studies of ion transfer across interfaces with two immiscible
liquids. The fluorescence of nitrobenzene with tryptophan
has been important in binding studies of substrates in
proteins. Specifically, sugar binding studies of the trans-
membrane protein lactose permease have used intrinsic Trp
fluorescence with a nitro containing sugar, 6′-(N-dansyl)-

aminohexyl-1-thio-â-D-galactopyranoside (R-NPG), to de-
termine and quantify sugar binding.7,8

Although nitro compounds are of general and biological
significance, only a limited number of studies have focused
on developing force field (FF) parameters for use in
molecular simulations.9-13 Price et al.13 developed nitro
parameters for the OPLS-AA FF that resulted in good
agreement with experimental gas-phase and liquid properties,
e.g., density, heats of vaporization, and free energies of
salvation, from molecular simulations. The primary focus
of FF development has been nitrobenzene because of its
importance as an organic solvent. An excellent comparison
of nitrobenzene FFs (OPLS-AA,13 Michael and Benjamin,11

and Janssen et al.9) and experiment is discussed by Jorge et
al.10 The FF by Michael and Benjamin11 focused on the
nitrobenzene/water interface, while other FFs were only
compared with bulk properties. It was found that OPLS-AA
compares most favorably with experiment10 and will be used
as a benchmark in our studies.

For the CHARMM FF, a parameter set is not currently
available for nitro compounds.14 Therefore, the main purpose
of this work is to develop nitro parameters consistent with
CHARMM optimization procedures.14-16 This new parameter
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set is then tested on pure liquid and interfacial systems of
nitroalkanes and nitrobenzene.

Special focus in the force field development is on potential
energy scans of two nitro torsional angles, i.e., C-C-N-O
and C-C-C-N. Several conformational energies of ni-
troalkanes with the OPLS-AA FF were compared with ab
initio energies at the HF/6-31g(d) level.13 For nitroaromatics,
Staikova and Cszmadia17 used the same quantum mechanical
(QM) methods to study the conformational energies about
the C-C-N-O torsion. However, we have demonstrated
with alkanes the importance of including electron correlation,
i.e., more accurate QM methods, for torsional energies.18,19

Consequently, highly accurate ab initio methods will be used
in this study to describe the conformational energies of
nitroalkanes and nitrobenzene. The FF will be adjusted
accordingly to best match these QM calculations, and the
methods and results will be described in the following
sections.

2. Methodology
The methodologies used for fitting the CHARMM FF (2.1),
ab initio calculations (2.2), and molecular dynamics simula-
tions (2.3) for nitro compounds are described in this section.

2.1. Force Field Fitting. The potential energyV(R̂) in
the CHARMM FF14 as well as other additive FF13,20-22 is a
function of the positions of all of the atoms in the system
and has the following general form:

Urey-Bradley and improper dihedral terms are available in
CHARMM but are not used for the nitro compounds. The
parameters in the initial two intramolecular terms of eq 1
(Kb, b0, Kθ, andθ0) are obtained from previous fits for the
OPLS-AA FF.13 Identical methods are used in developing
these force field parameters for CHARMM.14,23The dihedral
potential is optimized based on highly accurate torsional
energy scans from QM calculations on model com-
pounds.18,24,25van der Waals interactions are treated by the
well-known Lennard-Jones (LJ) “6-12” potential, whereεij

is the potential energy minimum between two particles, and
Rmin,ij is the position of this minimum. The conversion factor
betweenRmin,ij andσij in other LJ potential forms isRmin,ij )
21/6σij. Last,qi andqj are the atomic partial charges, andεD

is the dielectric constant.
The optimization procedure for the parameters in eq 1 is

consistent with the procedure used for developing the
CHARMM FF.14-16 Parameters for only nitrogen, oxygen,
and adjacent group atoms (carbons bonded to nitrogen) were
adjusted to maintain the transferability of other atoms in the
molecule. First, the atomic charges on the nitro compound

are adjusted to best represent scaled QM calculations (details
in section 2.2) of water/nitro compound interaction energies
based on the TIP3P26,27 water model. This is known as the
supramolecule approach,14 and the initial guess for the atomic
charges is based on similar groups in the CHARMM FF.
The LJ parameters are modified to best represent the
experimental density and optimized separately for nitroal-
kanes and nitrobenzene to represent changes in the nitro
dispersion energies due to the neighboring aromatic ring.
Only the experimental density at 298.15 K for nitropropane
and nitrobenzene is used for the LJ fits. Therefore, other
properties, compounds, and temperatures are predictions. The
dihedral parameters (Kφ,j, nj, and δj) are fitted to accurate
QM conformational energies (details in section 2.2) and
consist of 1-4 sets,j, per dihedral type and summed over
all the dihedral angles in the molecule.

The optimization of the C27rn FF parameters is typically
an iterative process and requires several changes to obtain
proper convergence of the desired properties. The super-
molecule approach defines the charges, but the LJ and
dihedral parameters are interdependent. Changes to the LJ
terms are made until the bulk density is in satisfactory
agreement with experiment. Consequently, the dihedral
parameters are optimized for each LJ parameter set.

2.2. Quantum Mechanical Calculations.The Gaussian03
suite of programs28 was used for the following QM calcula-
tions: (1) conformational states of nitropropane, nitrobutane,
nitropentane, and nitrobenzene and (2) water interacting with
individual nitro compounds. The conformational minima
were optimized using tight convergence criteria (1.5× 10-4

and 1.0× 10-4 hartree/bohr for maximum and rms force)
and a starting structure near the corresponding conformation,
i.e., trans or gauche. In addition to the minima, conformations
between the local minima and barriers are optimized. This
was done using the Berny Algorithm29 by fixing a corre-
sponding dihedral angle on a transition state (TS) pathway.
Geometry optimizations for single molecule conformations
were performed at MP2/cc-pVDZ, while HF/6-31g(d) was
used for water/nitro interactions. This lower level of theory
for the dimer was used to be consistent with the CHARMM
parametrization of the Coulombic terms.14

The HM-IE method30 was used to estimate the energy of
each individual molecular conformation of nitro compounds
at the CCSD(T) level with a basis set larger than that used
to obtain the optimized geometry. This method estimates
molecular properties by assuming that the separate effects
of electron correlation and basis set size are additive. These
hybrid or compound QM methods, such as the Gaussian-
3,31,32 Dunning and Peterson,33 and HM-IE,30 estimate
energies of CCSD(T) with a large basis set (LBS) by
calculating CCSD(T) with a smaller basis set (SBS) and
adding a correction based on the difference between MP2
energies with a LBS and a SBS as follows

V(R̂) ) ∑
bonds

Kb(b - b0)
2 + ∑

angles

Kθ(θ - θ0)
2 +

∑
dihedrals

[∑
j

Kæ,j(1 + cos(njæ - δj))] +

∑
nonbonded pairs

εij[(Rmin,ij

rij
)12

- (Rmin,ij

rij
)6] +

∑
nonbonded pairs

qiqj

εDrij

(1)

Econf[CCSD(T)/LBS]) Econf[CCSD(T)/SBS]+
(Econf[CCSD(T)/LBS]- Econf[CCSD(T)/SBS])

= Econf[CCSD(T)/SBS]+ (Econf[MP2/LBS] -
Econf[MP2/SBS])
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whereEconf is the energy of the conformer, and the difference
between CCSD(T)/LBS and CCSD(T)/SBS is approximated
at the MP2 level. A SBS of cc-pVDZ and LBS of cc-pVQZ
was used here and also found previously to be an accurate
measure of CCSD(T)/cc-pVQZ for linear alkanes.18

As an additional accuracy measure of the dihedral
potential, the curvatures for selected trans or gauche wells
were estimated by taking the second derivative of the energy,
V(φ), with respect to the angle by means of fitting a parabolic
function

wherek, l, andmare fit to either the QM energy or empirical
force field predictions with energies up to 2 kcal/mol higher
than the local minima.

2.3. Molecular Dynamics Simulations.Simulations were
performed with CHARMM34 using C27r for the alkane
portion of the FF18,19and adjustments to the nitro force field,
referred to here as C27rn. Nitrobenzene and nitropropane
simulations with OPLS-AA are also performed for compari-
son with C27rn. The leapfrog Verlet algorithm was used with
cubic periodic boundary conditions. A time step of 1 fs was
applied to ensure time step artifacts did not affect our
calculated properties. LJ interactions were smoothed by a
switching function over 8-10 Å. Isobaric-isothermal en-
semble (NPT) simulations were run with long-range elec-
trostatics and LJ corrections. The particle mesh Ewald
(PME)35 method was used for the long-range electrostatic
contribution (beyond 10 Å) to the total energy withκ ) 0.34
Å-1 and a fast-Fourier grid density of about 1 Å-1. The
isotropic periodic sum (IPS) method36 was used to obtain
the long-range correction in LJ at an effective infinite cutoff.
This PME/IPS method has been found to be accurate in bulk
and interfacial systems.37 All hydrogen atoms were con-
strained using the SHAKE algorithm.38 The extended system
formalism was used to maintain the temperature via the
Hoover thermostat39 and/or pressure40,41 with a thermostat
coupling constant of 20 000 kcal mol-1 ps-2 and a piston
mass of 2000 amu.

Initial conformations for bulk nitropropane, nitrobutane,
and nitrobenzene were obtained by placing 320, 256, and
200 molecules, respectively, on an even grid in random
orientations. With these starting conformations, the energy
was minimized with the steepest descent routine for 200 steps
to reduce unfavorable van der Waals contacts. The velocities
were then set to the desired temperature, and an equilibration
period of 500 ps was used for all simulations to ensure full
equilibration. The coordinates were saved every 1 ps for a
total simulation time of 2 ns for simulations at 288.15,
293.15, and 303.15 K, but a simulation time of 5 ns was
used for the 298.15 K runs. For vapor simulations,N
simulations with a single molecule were run for 500 ps after
50 ps of equilibration. Coordinates from the end of each
liquid simulation at 298.15 K were used asN initial
coordinates for the vapor simulations.

Densities, heat of vaporization, isothermal compressibili-
ties, and self-diffusivities were calculated. Standard errors
were estimated from block averages.42 Isothermal compress-
ibilities were calculated from

where V is the volume,〈δV2〉 is the volume fluctuation,
and kb is Boltzmann’s constant. The 5-ns simulations at
298.15 K were used to calculate eq 4. The slope of the
mean squared displacement versus time was used to deter-
mine the apparent self-diffusivity for the periodic boundary
condition, DPBC, using a weighted least squared fit with
weights obtained from averages of 8-10 subgroups of
molecules per trajectory. The self-diffusivity was corrected
for system-size effects using the hydrodynamic model of Yeh

≡ Econf[MP2:CC] (2)

V(φ) ) k(φ - φ0)
2 + l(φ - φ0) + m (3) Figure 1. Model compounds used in QM calculations to

develop the C27rn FF. The atom types for the aliphatic
carbons are labeled on nitropropane, and the dihedrals are
labeled on nitrobutane.

Table 1. Nonbonded Parameters for C27rna

atom description/location q [e] ε [kcal/mol] Rmin/2 [Å]

N nitroalkane +0.50 -0.160 1.837
O nitroalkane -0.40 -0.120 1.700
C C1 in nitroalkane +0.16 -0.056 2.010
H attached to C1 +0.07 -0.028 1.340
N nitroarene +0.50 -0.120 1.850
O nitroarene -0.40 -0.100 1.770
C C6 in nitrobenzene +0.34 -0.070 1.992
C C1 or C5 in nitrobenzene -0.18 -0.070 1.992
H attached to C1 or C5 +0.16 -0.046 1.100
a See Figure 1 for labeling nomenclature.

Table 2. Torsional Parameters for C27rna

Kφ [kcal/mol] n δ [deg]

CH2-CH2-N-O 0.060 2 0
CH3(2)-CH2-CH2-N 0.084 4 0

0.360 3 0
0.151 2 0
0.133 1 180

HA-CA-CA-N 1.000 2 180
CA-CA-CA-N 6.140 2 180
CA-CA-N-O 1.100 2 180
a CH3 and CH2 are for nitroalkanes and CA is for nitrobenzene.

âT ) - 1
V (∂V

∂P)T
)

〈δV2〉
VkbT

(4)
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and Hummer43 of a particle surrounded by a solvent with a
viscosity,η

whereL is the cubic box length andê ) 2.837297.43

The heat of vaporization was calculated from

where〈Ul〉 is the average internal energy over time (sum of
intra- and intermolecular energies) of the liquid state,N is
the total number of molecules, and〈Uig〉 is the average ideal
gas internal energy. The average liquid internal energy was
obtained from the liquid simulations andN gas simulations
to obtain〈Uig〉.

The surface tension was evaluated from

where Lz is the size of the simulation box normal to the
interface,Pzz is the normal component of the internal pressure
tensor, andPxx andPyy are the tangential components. The
MD simulations here contain two interfaces (a liquid film
with vapor at the top and bottom, see ref 37), so a prefactor
of 0.5 is required to obtainγ on a per interface basis.

3. Results and Discussion
The parametrization of the LJ, electrostatics, and dihedral
terms is iterative, but the results discussed here are based
on the optimal values in Tables 1 and 2. The ab initio
calculations on the molecular structure and torsional profiles
are presented first. Then, the conformational energies of the

Table 3. Molecular Structures of Nitro Compounds from MP2/cc-pVDZ (except Nitropropane Also with cc-pVTZ) with Atom
Numbering and Dihedral Angles as Shown in Figure 1a

nitropropane nitrobutane nitropentane nitrobenzene

t-DZ g-DZ t-TZ g-TZ t g t g MP2 expb

C1-N 1.50 1.50 1.49 1.49 1.50 1.50 1.50 1.50 1.48 1.49
C1-C2 1.52 1.53 1.52 1.52 1.52 1.53 1.52 1.53 1.40 1.40
NdO 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.22
∠C1-NdO 117.1 117.0 117.1 117.2 117.1 117.0 117.1 117.0 117.3 117.3
∠OdNdO 125.9 125.9 125.6 125.5 125.9 125.9 125.9 125.9 125.4 125.3
∠C1-C2-N 110.6 109.1 109.2 109.4 110.5 109.0 110.6 109.0 118.7 118.3
R 121.7 111.1 88.6 115.1 121.6 110.2 121.9 110.1 0.0

-57.9 -66.7 -88.6 -63.3 -58.0 -67.5 -57.7 -67.6
â 179.7 -60.7 180.0 -59.0 180.0 -61.1 179.6 -60.9 0.0

a Distances are in Å and angles are in degrees. For the nitroalkanes, structures are listed in the (CCCN) trans (t) and gauche (g) conformation.
b The experimental electron diffraction data for nitrobenzene.44,45

Figure 2. Conformational energies of nitropentane as a
function of R (C2-C1-N-O) and â (C3-C2-C1-N) torsional
angles. The corresponding dihedral is fixed for each point on
the panel, but all other degrees of freedom are minimized.
The symbols are QM energies (MP2:CC), the solid line is
C27rn, and the dashed line is OPLS-AA.

Ds ) DPBC +
kBTê
6πηL

(5)

∆Hvap ) 〈Uig〉 -
〈Ul〉
N

+ RT (6)

Figure 3. Conformational energies of nitrobenzene as a
function of R and â torsional angles. The corresponding
dihedral is fixed for each point on the panel, but all other
degrees of freedom are minimized. The symbols are QM
energies (MP2:CC), the solid line is C27rn, and the dashed
line is OPLS-AA.

γ ) 0.5〈Lz[Pzz- 0.5(Pxx + Pyy)]〉 (7)
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new force field (C27rn) are compared with the QM calcula-
tions as well as the OPLS-AA.13 Finally, C27rn is tested
with bulk and interfacial simulations and compared with
experiment and OPLS-AA.

3.1. Molecular Structures and Torsional Profiles.3.1.1.
Ab Initio Calculations.The geometry of the nitro compounds
(Figure 1) is optimized using MP2, and the distances, angles,
and torsional angles are listed in Table 3. The agreement
between electron diffraction44,45 and MP2/cc-pVDZ for
nitrobenzene is excellent, i.e., deviations ofe0.01 Å and
0.4°. For nitroalkanes, there are two minima of the C-C-
C-N torsion (â), i.e.,t-trans andg-gauche (g- is shown here
but equivalent tog+). Double- and triple-ú basis set
optimizations for thet conformation of nitropropane result
in a noticeable difference for the C-C-N-O torsion angle,
R (Table 3). However, in terms of conformational energy
(of most interest to this work) HM-IE corrects for this basis
set effect. Moreover, there are negligible differences with
other structural properties of thet conformer and all
properties of theg conformer. Therefore, MP2/cc-pVDZ
optimizations will be used for their efficiency and reasonable
accuracy with larger nitroalkanes. Previous calculations with
B3LYP/6-31g(d)46 result in t structures similar to those in
Table 3 but may result in similar basis set problems. There
are other structural differences between thet andg confor-
mation, i.e., ∠C1-C2-N and R are reduced in theg
conformation compared tot. However, other internal geom-
etry values are not influenced by this change in theâ torsion.

Quantum mechanical conformational energies of theR and
â torsions of the four nitro compounds were calculated using
eq 2 with a total of 129 conformations. The torsional profiles
for nitropentane and nitrobenzene are shown as examples in
Figures 2 and 3, respectively. Theâ torsion is alkane-like
with two minima (t andg). For alkanes, high-level ab initio
QM calculations on pentane through heptane yield a∆Eg

(energy difference from the all-trans state) slightly higher
than+0.5 kcal/mol.18,47-49 However, theg conformation in
nitroalkanes is lower in energy, i.e.,∆Eg ) -0.6 kcal/mol
(see Table 4). The terminal nitrogen and oxygen on thisâ

torsion stabilize theg state. Similarly, for nitroalkanes there
is a greater than 1 kcal/mol decrease in the cis conformational
energy compared to alkanes. Although there are differences
in g and cis energies, the conformational energy of the
transition from thet to g state∆Et/g

† is similar to that of an
alkane (3 kcal/mol).18

The conformational energy barriers for nitroalkanes are
lower than nitrobenzene. The conformational space is
restricted because the nitro group is attached to an aromatic
ring (Figure 3). Therefore, the lowest energy conformation
of nitrobenzene is when the nitrogen and oxygen atoms are
in the same plane as the carbons, i.e., a planar molecule.

3.1.2. Empirical Potentials.A root-mean squared error
objective function was used to fit the set of nitro dihedrals
to the high-level QM energies discussed above. Table 2 lists
five sets of dihedrals fit to the ab initio calculations, denoted
here as C27rn. Only the C-C-C-N dihedral required more
than one term. This is similar to the alkane C-C-C-C
torsion in the C27r FF,18 where multiple torsional terms were
needed to accurately fit conformational energies.

The molecular structure of the nitroalkanes and nitroben-
zene with C27rn is listed in Table 5. The bond lengths are
nearly identical between the MP2/cc-pVDZ and C27rn
optimized structures.∠C1-C2-N is slightly larger with
C27rn but only deviates by 3-4°. The optimizedt confor-
mation with C27rn results in anR torsion in good agreement
with the correct value using MP2/cc-pVTZ. There is also
excellent agreement for the value of theâ torsion of theg
conformation with less than 1° difference between QM and
C27rn.

The calculated nitroalkane minima and transition state
(TS) energies with C27rn and OPLS-AA are compared with
MP2:CC in Table 4. The absolute average deviation (AAD)
from MP2:CC for these conformations with C27rn and
OPLS-AA is 0.07 and 0.36 kcal/mol, respectively. The AAD
for just ∆Eg is larger with OPLS-AA (0.47 kcal/mol) and
similar for C27rn (0.09 kcal/mol). Overall, C27rn is superior
to OPLS-AA in these conformational energies. OPLS-AA
is parametrized on smaller molecule conformations of nitro-
alkanes with HF/6-31g(d). Since low-level QM calculations
are known to result in inaccurate dispersion energies,50,51the
large discrepancy in∆Eg is not surprising for OPLS-AA.

The correct curvature oft and g wells is of greater
importance than slight inaccuracies of minima energies,
because there is an increased availability of dihedral angles
at a given temperature.18 Table 6 lists the curvature for the
minima of thet andg conformers of theâ torsion calculated
from eq 3. The curvature of the C27rn wells compared to
OPLS-AA is in better agreement with MP2:CC with an
overall AAD of 0.16× 10-3 and 0.63× 10-3 kcal mol-1

deg-2, respectively. The QM curvature of theg well is greater
thant due to electron repulsion. For OPLS-AA theg well is
too broad (Table 6) because of the lack of conformations
other than the minima and transitional barrier and a less
accurate QM method.13

OPLS-AA and C27rn both follow the conformational
energies of MP2:CC qualitatively as shown in Figures 2 and
3, but C27rn is noticeably in better agreement with QM.
Although there are differences with QM and C27rn for the

Table 4. Nitroalkane Conformer Energies in kcal/mol
Relative to the All-Trans State of the â Torsiona

∆Eg ∆Et/g
† ∆Eg/g

†

C3NO2 MP2:CC -0.60 3.14 3.68
C27rn -0.49 3.13 3.64
OPLS-AA 0.06 2.64 4.04

∆Eg ∆Et/g
† ∆Eg/g

†

C4NO2 MP2:CC -0.61 2.96 3.65
C27rn -0.56 3.10 3.65
OPLS-AA -0.24 2.57 3.73

∆Eg ∆Et/g
† ∆Eg/g

†

C5NO2 MP2:CC -0.62 2.98 3.64
C27rn -0.52 3.12 3.70
OPLS-AA -0.23 2.58 3.76

a MP2:CC is the approximate CCSD(T)/cc-pVQZ energy using eq
2. C27rn is the modified C27r force field. The energy of the transition
state between local minima i and j relative to the all-trans state is
denoted as ∆Ei/j

† .
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R torsion in nitroalkanes (Figure 2), they are small for an
essentially freely rotating potential at 298.15 K. Since the
cause for this discrepancy is the LJ and electrostatic energies,
a polarizable FF may improve this agreement between QM
and C27rn. For theâ torsion, the TS energy is lower than
QM with OPLS-AA, and theg minimum is skewed for
nitropentane (Figure 2), where as C27rn follows the QM
energies almost exactly. TheR adiabatic surface with OPLS-

AA and C27rn is similar and in satisfactory agreement with
MP2:CC for nitroalkanes. However, OPLS-AA significantly
underpredicts the out-of-plane energy of the oxygen in
nitrobenzene (>3 kcal/mol), where C27rn results in excellent
agreement with MP2:CC.

3.2. Molecular Dynamics Simulations.The validity of
the new C27rn FF for nitro compounds was tested on bulk
and interfacial systems containing nitropropane, nitrobutane,
and nitrobenzene. The nitrogen and oxygen LJ parameters
for nitroalkanes were adjusted to best fit the density of
nitropropane at 298.15 K, and the simulated density is in
perfect agreement with experiment.52 The temperature de-
pendence of the density is shown in Figure 4, and the AAD
of C27rn is only 0.29 g/cm3. There is similar agreement for
the densities of nitrobutane and nitrobenzene with an AAD
of 0.53 and 0.85 g/cm3, respectively (Figure 4). The LJ
nitrogen and oxygen parameters for nitrobenzene were
allowed to vary from nitroalkanes to obtain accurate densities
at 298.15 K. The density of OPLS-AA for nitropropane and
nitrobenzene are slightly lower than experiment (0.974 and
1.154 g/cm3, respectively), but the LJ parameters for nitrogen
and oxygen were identical for all nitro compounds in the
OPLS-AA FF.

As shown previously, the conformational energies about
theâ torsional surface of nitroalkanes differ between OPLS-
AA and C27rn. Consequently, the conformational prob-
abilities for theâ torsion are also quite different (Figure 5).
There is an increased population ofg conformations with
C27rn (74% versus 57% for C27rn and OPLS-AA, respec-
tively). This increase ing population is similar to MD
simulations of pure alkanes18,19with a more accurate descrip-
tion of the C-C-C-C torsional surface. Contrary to
nitroalkanes, experimental data are available for conforma-
tional populations of alkanes, and the C27r force field fit to
QM (MP2:CC) is in excellent agreement with experiment.18

Table 5. Molecular Structures of Nitro Compounds with C27rn

nitropropane nitrobutane nitropentane nitrobenzene

t g t g t g C27rn expa

C1-N 1.50 1.50 1.50 1.50 1.50 1.50 1.47 1.49
C1-C2 1.54 1.54 1.54 1.54 1.54 1.54 1.42 1.40
NdO 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.22
∠C1-NdO 117.5 117.4 117.5 117.5 117.5 117.5 117.5 117.3
∠OdNdO 124.5 124.2 124.6 124.4 124.5 124.4 125.0 125.3
∠C1-C2-N 113.8 113.8 113.7 113.9 113.7 113.9 121.7 118.3
R 85.8 115.2 86.4 108.7 85.9 110.1 0.0

-85.5 -75.4 -86.2 -78.6 -86.0 -77.8
â 180.0 -61.4 180.0 -61.9 180.0 -61.9 0.0
a The experimental electron diffraction data for nitrobenzene.44,45 Atom numbering and dihedral angles as shown in Figure 1.

Table 6. Curvatures (2k in Eq 3) of Trans And Gauche
Conformationsa

state molecule MP2:CC C27rn OPLS-AA

t C3NO2 2.57 2.61 2.26
g C3NO2 4.26 3.98 2.99
t C4NO2 2.42 2.60 2.23
g C4NO2 4.14 3.98 3.16
t C5NO2 2.42 2.61 2.23
g C5NO2 4.18 3.98 3.16

a In units of 10-3 kcal mol-1 deg-2.

Table 7. C27rn Simulation Averages and Standard Errors
for Dipole Moment (µ), Density (F), Isothermal
Compressibility (âT), Diffusivities (DPBC and Ds), and Heat
of Vaporization (∆Hvap) at 298.15 Ka

C3NO2 C4NO2 NB

µ C27rn 4.80 ( 0.00 4.80 ( 0.00 4.53 ( 0.00

[D] OPLS-AA 3.82 ( 0.00 3.33 ( 0.00

exp53 3.59 4.22

F C27rn 0.999 ( 0.007 0.974 ( 0.007 1.208 ( 0.009

[g/cm3] OPLS-AA 0.974 ( 0.008 1.154 ( 0.009

exp52 0.996 0.968 1.198

âT C27rn 6.27 ( 0.15 4.64 ( 0.16 4.17 ( 0.10

[10-10 m2/N] OPLS-AA 11.34 ( 0.09 4.57 ( 0.12

exp53 5.23

DPBC C27rn 0.712 ( 0.070 0.595 ( 0.010 0.370 ( 0.060

[10-5 cm2/s] OPLS-AA 0.580 ( 0.083 0.706 ( 0.072

exp53 1.08

Ds C27rn 0.929 ( 0.070 0.815 ( 0.010 0.477 ( 0.060

[10-5 cm2/s] OPLS-AA 0.792 ( 0.083 0.812 ( 0.072

exp53 1.08

∆Hvap C27rn 12.72 ( 0.38 14.19 ( 0.60

[kcal/mol] OPLS-AA 13.05 ( 0.48

exp53 10.37 13.15

a âT and ∆Hvap were calculated from eqs 4 and 6, respectively.
DPBC is the apparent self-diffusivity obtained directly from the mean
squared displacement in the simulations, and the corrected self-
diffusivity, Ds, is obtained from eq 5.

Table 8. Surface Tension of Nitropropane and
Nitrobenzene in dyn/cm Compared with Experiment53

C3NO2 NB

293.15 K C27rn 31.51 ( 0.87 43.52 ( 0.38
exp 30.64 42.70

303.15 K C27rn 29.49 ( 0.35 41.94 ( 0.64
exp 29.61 42.17
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This implies that these results for nitro compounds using
the same QM methods would be accurate if experimental
data were available.

The molecular dipoles (µ) of nitropropane and nitroben-
zene with C27rn are consistently higher than experiment.53

An elevatedµ is expected and typical of the CHARMM FF
because the experimentally measured values are usually in
the gas phase and polarization of the liquid phase results in
an increase in the dipole moment. MD simulations with
OPLS-AA result in an averageµ of 3.82 and 3.33 D for
nitropropane and nitrobenzene, respectively, which are
significantly lower than experiment.

The radial distribution functions (RDFs) between oxygen
and carbon calculated from the bulk simulations are shown
in Figure 6 for nitrobenzene (top) and nitropropane (bottom).
The RDFs for OPLS-AA and C27rn are similar in shape
with some subtle differences in peak locations. For example,
the O/C distance is slightly larger between molecules for
OPLS-AA and consistent with an increase in the overall
density of the C27rn liquids. There is a preference of oxygen
to interact closely with thepara (C4) andmeta(C3 and C5)
carbons in nitrobenzene (Figure 1, data not shown forpara)
but at a distance greater than a C-H‚‚‚O hydrogen bond.
However, interactions are weaker with the more negative
ortho carbons (C2 and C6). A similar trend is seen for
nitropropane with oxygen interacting more strongly with the
C3 carbon. Moreover, the first peak height is reduced with
OPLS-AA for the O/C1 and O/C3 RDFs.

The enthalpy of vaporization (∆Hvap) is comparable to
experiment53 for nitropropane and nitrobenzene (Table 7).
C27rn results in∆Hvap that is slightly larger than experiment
for nitropropane but within statistical error for nitrobenzene.
The OPLS-AA FF is in slightly better agreement with
experiment (13.05 kcal/mol for nitrobenzene) but at the cost
of a lower bulk density. The isothermal compressibilities (âT)
of C27rn and OPLS-AA are lower than experiment for
nitrobenzene by 1.06 and 0.66× 10-10 m2/N, respectively.

The diffusion constant (Ds) and surface tension (γ) were
used as additional measures for the accuracy of C27rn.Ds

of nitrobenzene is smaller than experiment for C27rn and
OPLS-AA (0.812× 10-5 cm2/s). The nitrobenzene diffusion
constant is larger for OPLS-AA compared to C27rn, but the
OPLS-AA Ds for nitropropane is 15% smaller than C27r.
This flip-flop in Ds order may not be the result of inaccurate
nitro parameters, rather differences in the parameters for the
alkane or benzene portion of the respective FF. The agree-
ment with experiment is improved forγ (Table 8) compared
to Ds with an AAD of 1.6 and 1.2 dyn/cm for nitropropane
and nitrobenzene, respectively.

4. Summary
Force field parameters for the important nitro group have
been optimized for use with the CHARMM FF. The
conformational energies of nitroalkanes and nitrobenzene
were best fit to accurate and high-level QM calculations.
Consequently, MD simulations with C27rn result in an
increased population ofg conformers compared to OPLS-
AA. Bulk and interfacial properties from the nitro simulations
with C27rn are in excellent agreement with experiment,
especially densities, heats of vaporization, and surface
tensions. However, the calculated diffusion constant of liquid

Figure 4. The density of nitrobenzene (green), nitropropane
(red), and nitrobutane (blue) as a function of temperature for
C27rn (lines) and experiment (triangles).

Figure 5. The probability of the â (C3-C2-C1-N) torsional
angle of nitropropane.

Figure 6. Radial distribution functions (RDF) between oxygen
and carbon of nitrobenzene (top) and nitropropane (bottom).
The C27rn results are in solid lines, and the OPLS-AA results
are in dotted lines.
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nitrobenzene with both OPLS-AA and C27rn is lower than
experiment. Simple nonpolarizable FF models can accurately
model most liquid properties but without more complex
functions, such as polarizability, not all parameters will be
in excellent agreement with experiment. Since these new
parameters accurately represent interaction energies between
water and nitro compounds and pure component properties,
C27rn can be used in simulations of biologically relevant
compounds, such as antibiotics with nitro groups or sugar
analogs as substrates in membrane proteins.
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Abstract: By removing the fastest degrees of freedom, constraints allow for an increase of the

time step in molecular simulations. In the last decade parallel simulations have become

commonplace. However, up till now efficient parallel constraint algorithms have not been used

with domain decomposition. In this paper the parallel linear constraint solver (P-LINCS) is

presented, which allows the constraining of all bonds in macromolecules. Additionally the energy

conservation properties of (P-)LINCS are assessed in view of improvements in the accuracy of

uncoupled angle constraints and integration in single precision.

I. Introduction
In classical molecular simulation methods, such as molecular
dynamics (MD), the time step is limited by the fastest
motions, which are bond oscillations. These oscillations have
a relatively high frequency and low amplitude. By replacing
at least the bond vibrations involving hydrogen atoms by
holonomic constraints the time step in molecular simulations
can be increased by roughly a factor of 4. Constraints are
often considered a more faithful representation of the physical
behavior of bond vibrations which are almost exclusively in
their vibrational ground state.

Constraints can be added to the Hamiltonian using
Lagrange multipliers. When time is discretized the linear
equations for the Lagrange multipliers become nonlinear. In
the past decades several algorithms have appeared to solve
these equations. The first algorithm was SHAKE,1 an iterative
method for use with a leapfrog integrator. The equivalent
for the velocity-Verlet integrator is called RATTLE.2 Because
of their iterative nature these algorithms do not lend them
selves well for parallelization. In the simplest approach3

communication is required at each iteration. For a molecule
with all bonds constrained and a time step of 2 fs this leads
to around 10 iterations and communication steps per MD
time step, which is a much higher communication load than
that of the other parts of the MD algorithm. In principle one
could use the strategy for parallelization that will be described
in this paper for the LINCS (linear constraint solver)

algorithm4 also for iterative methods. But the problem with
that is that the number of iterations is not known a priori,
and, therefore, the data that need to be communicated are
not known when the domain decomposition is (re)made.

To avoid the issue of nonlinearity, the problem can be
reduced to a linear matrix equation if the second derivatives
of the constraint equations are set to zero. However, in a
finite discretization scheme corrections are necessary to
achieve accuracy and stability. Several methods have been
proposed based on this linearization that have been termed
promising for parallel simulations.5-8 But none of these
methods has been widely used, because the inherently
unstable algorithms require some (periodically applied)
corrections.

Since there are currently no practical parallel constraints
algorithms, molecular simulation packages do not allow for
constraints to cross node boundaries. For codes using domain
decomposition this means that in practice only bonds
involving hydrogens can be constrained, as such bonds only
couple locally to one heavy atom. For particle or force
decomposition codes, such as GROMACS 3.3,9 it means that
molecules with all bonds constrained cannot be split over
processor boundaries. For a protein in water one can then
not parallelize efficiently over more than a few processors.

Without constraints the fastest motions in molecular
simulations are bond vibrations involving hydrogens, with
a period of about 10 fs. When these bonds are constrained,
the time step can be doubled, since the next fastest motion,
bond vibrations involving only heavy atoms, have the fastest* Corresponding author e-mail: hessb@mpip-mainz.mpg.de.
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mode with a period of about 20 fs. How big the time step
can actually be is difficult to determine. A nice, but deceptive
property of Verlet type integrators, which are used by all
major simulation packages, is that vibrations in harmonic
potentials are integrated with exact energy conservation. Thus
energy conservation is independent of the time step. How-
ever, the effective temperature at which the ensemble for
harmonic modes is generated increases with the time step.
For 20 and 10 time steps per oscillation the effective
temperature is 3% and 14% too high, respectively. When
such harmonic modes are not considered important, their
temperature increase can be ignored, but in that case
constraining them is better, since this avoids instabilities.

Additionally replacing bonds involving heavy atoms by
constraints does not allow for an increase in time step, since
also angle vibrations involving hydrogens have the shortest
period of 20 fs. In the GROMACS package these vibrations
can also be removed by replacing most hydrogen atoms by
virtual interaction sites and constraining C-O-H angles.10

Since then the fastest remaining modes have a period of about
45 fs, and this allows for an increase in a time step of slightly
more than a factor of 2. Recently it was decided to implement
domain decomposition into the GROMACS package, and,
therefore, a parallel constraint algorithm is required, other-
wise a factor of 2 in performance would be lost.

A decade ago the LINCS (linear constraint solver)
algorithm was introduced.4 This algorithm builds on the same
linear approximation stated above but improves upon earlier
algorithms in three ways. First a term is added to the
equations which is analytically zero but for the discretized
version leads to a completely stable algorithm. Second,
iterations are applied to capture the nonlinear effects (i.e.,
bond rotations); under most circumstances a single iteration
suffices. Third, the matrix is inverted efficiently using a series
expansion, which leads to a bounded range of couplings
between constraints, equal to the expansion order. The
algorithm can be used for any type of integrator. In the
original paper it is presented for the leapfrog integrator. But
it is ideally suited for projecting out components of velocities
or forces, a linear problem for which no iterations are
required. The LINCS algorithm is the standard constraint
algorithm in the GROMACS package, next to the SETTLE
algorithm11 which is only used for water molecules. Recently
a “matrix-version’’ of the SHAKE algorithm has been
developed,12 which is parallelized with particle decomposi-
tion. This algorithm solves the same matrix equations as
those of LINCS but uses a conjugate gradient solver.
Therefore it does not have the exactly bounded coupling
range that makes LINCS suitable for use in domain
decomposition.

The original paper hinted that LINCS is easy to parallelize.
That is what will be shown in the following, although in a
slightly different way than originally stated. Additionally the
energy conservation properties of LINCS are shown and
compared with SHAKE in the light of an improvement for
uncoupled angle constraints and recent improvements in
integration accuracy.

II. The LINCS Algorithm
A concise description of the LINCS algorithm will now be
presented, and the full derivation can be found in the LINCS
paper.4

Consider a system ofN particles, with positions given by
a 3N vector r (t). The equations of motion are given by
Newton’s law

wheref is the 3N force vector andM is a 3N × 3N diagonal
matrix, containing the masses of the particles. In general a
system is constrained byK time-independent constraint
equations

The constrained system can still be described by 3N second-
order differential equations in Cartesian coordinates.13,14The
constraints will be applied according to the principal of least
action.15 In this approach the constraints are added as a zero
term to the potentialV(r ), multiplied by Lagrange multipliers
λi(t)

A new notation is introduced for the gradient matrix of the
constraint equations which appears on the right-hand side
of the equation

Note thatB is aK × 3N matrix, and it contains the directions
of the constraints. Equation 3 can now be simplified to give

The equations can be solved forλ to give the constrained
equations of motion

whereT ) M -1BT(BM -1BT)-1. The projection matrixI -
TB projects out the components of a vector in the directions
of the constraints,M-1f is the vector of unconstrained second
derivatives, andT is a 3N × K matrix that transforms
motions in the constrained coordinates into motions in
Cartesian coordinates, without changing the equations of
motion of the unconstrained coordinates. The last term in
(6) represents centripetal forces caused by rotating bonds.
If the constraints are satisfied in the starting configuration,
the linear differential eq 6 will conserve the constraints. The
nonlinearity arises when eq 6 is discretized.

For holonomic constraints the constraint equations can be
chosen as

d2r

dt2
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wheredi is the reference distance between atomsi1 and i2.
The first step in the LINCS algorithm for a leapfrog
integrator gives the linear, “zeroth iteration’’ correction

wherern+1
/ is the unconstrained updated configuration:

This algorithm is already stable but does not capture the
nonlinear effect of the lengthening of constraints due to
rotation. To correct for this, iterations are applied:

The projected lengthspz are chosen by assuming that the
observed displacements in iterationz perpendicular to the
constraint direction in stepn are (nearly) correct

wherel i
z is the slightly too long a distance in configuration

rn+1
z . For most systems a single iteration provides sufficient

accuracy. Quantitative results will be shown later. For
projecting out constraint components of other quantities, such
as velocities or forces, only the linear projection is required:

The main computational issue is the matrix inversion
required to obtainT. This is simplified by left and right
multiplying the constraint coupling matrixBnM -1Bn

T with a
diagonalK × K matrix S containing the inverse square root
of the diagonal of the coupling matrix:

The conversion goes as follows:

The matrixAn is symmetric and sparse and has zeros on the
diagonal. Thus a series expansion can be used to calculate
the inverse:

The inversion only converges when the absolute values of
all the eigenvalues ofAn are smaller than one. For calculating
the expansion only matrix-vector multiplications are required.
SinceA is very sparse, only the nonzero elements should be
stored, and the multiplications are computationally cheap.

Nearly all bonds in molecular simulations are sp3 or sp2

hybridized, which leads to a cosine of the angle between
bonds of -1/3 and -1/2, respectively. The off-diagonal
elements ofA are given by this cosine times a mass factor
which is between 0.5 and 1. This results in a maximum
eigenvalue ofA of 0.6-0.7, which means that the inversion
always converges. The effective eigenvalue for typical bond

distortions in MD simulations is around 0.4. Thus for each
term in the expansion, the projection becomes more accurate
by a factor of 0.4. The accuracy of each iteration can be
less though, since it is limited by the guess for the projection
of that iteration. The practical range for the expansion order
is between 4 and 8. For large angle-constrained molecules
eigenvalues larger than one occur, and therefore a different
inversion method is required.

Nonconnected angle constraints appear in methyl, NH3
+,

and COH groups when angle vibrations involving hydrogens
are removed.10 Such individual angle constraints produce
large eigenvalues with a localized eigenvector in matrixA.
Especially the rigid COH group is problematic with a largest
eigenvalue of 0.7, which is significantly larger than the
effective eigenvalues of 0.4 for bond constraints. This
imbalance means that the convergence of the expansion (15)
can be limited by a few angle constraints. To avoid
computational overhead due to angle constraints, the expan-
sion can be extended for some couplings only

where Ni is the normal order of the expansion,A* only
contains the elements ofA that couple constraints within
rigid triangles, and all other elements are zero. In this manner
the accuracy of angle constraints comes close to that of the
other constraints, while the series of matrix vector multipli-
cations required for determining the expansion only needs
to be extended for a few constraint couplings.

The last point is how the constraints need to be applied to
derivatives of the coordinates, namely the velocity and the
forces. In GROMACS, as in most other simulations pack-
ages, the velocities were determined from the difference
between the new and the old constrained positions. This can
lead to inaccurate integration in single precision, since the
increment of the coordinates can be very small. For the
leapfrog integrator, eq 12 applied to the half step velocity
would provide a more accurate solution. But recently it has
been shown that one can also directly use the Lagrange
multipliers.16 For the LINCS algorithm these are already
calculated, and the velocity correction then reads

Similarly the contribution of the constraints to the virial can
be determined from the constraint forces which in the
derivation above are given by the Lagrange multipliers. For
the virial the inner product of the distance with the constraint
forcesfc is required; this is simplyd‚λ. The full tensor can
be obtained by using the outer products of the constraint
directions with themselves.

III. The P-LINCS Algorithm
The inversion through a series expansion provides a nice
physical picture. The coupling matrixA gives the direct
coupling between bonds. The matrixA2 gives the coupling
between bonds separated by one bond and also the back-
coupling of bonds to themselves. The matrixA3 gives the
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coupling between bonds separated by two bonds, etc. This
means that with this inversion method bonds do not influence
each other when they are separated by more bonds than the
maximum order in the expansion. This fact can be used to
parallelize the algorithm.

When domain decomposition is used, each domain can
apply the LINCS algorithm not only to the local constraints
but also to some constraints involving only atoms of the
neighboring domains. In the original paper it was suggested
to communicate the atoms for the extra constraints for all
iterations at once. But it turns out to be more practical, and
often also more efficient, to communicate before each
iteration. Then in addition to the atoms of constraints that
cross the borders between domains, atoms that are separated
by maximally the number of bonds equal to the order of the
expansion need to be communicated (see Figure 1). When
these coordinates are present, a LINCS iteration can be
applied to local plus extra constraints. After such an iteration,
the local constraints and the ones crossing the border will
be in an identical state to a nonparallel version of the
algorithm. The extra, nonlocal constraints will differ, since
they have not felt the influence of some coupled constraints,
but this does not matter, since in the end state they do not
influence the local atoms. Note that for determining the
constraint contribution to the virial, one should take care that
constraints that cross cell boundaries are not double counted.
The additional terms in the expansion (16) for angle
constraints can interfere with the exact correspondence of

P-LINCS and LINCS results but only when two or more
triangles of constraints have a constraint in common.
However, this is not an issue, since for such cases the matrix
expansion converges too slowly or not at all. The procedure
for removing angle vibrations of hydrogens10 does not
introduce coupled triangles of constraints.

Before each iteration the updated nonlocal coordinates
need to be communicated. This leads to a total number of
communication steps of one plus the number of iterations.
No communication is required after the last iteration. Since
the number of iterations is usually one, the number of
communication steps is two. By doing a communication step
for each iteration an expansion order of up to 6 can be used,
since the number of bonds in an all-trans chain that fits in a
domain decomposition cell size of 1 nm (a typical minimum
value) is 7. When required, extra communication steps can
be added for atoms in more distant cells. The same procedure
can be used for constraining velocities or forces; there only
one communication step is required.

The final result of the P-LINCS algorithm is identical to
that of the LINCS algorithm, save for numerical rounding
differences. In the implementation of P-LINCS in the
upcoming 4.0 version of the GROMACS package, the
coupling matrix is always stored in the same order, which
leads to binary identical results to those of LINCS.

When the required extra pieces of molecule(s) are not
longer than the smallest dimension of a domain decomposi-
tion cell, one cell needs to communicate with at most 26
other cells with full 3D domain decomposition. The com-
munication can be performed in 3 steps of pairs of com-
munication calls. In the P-LINCS implementation in
GROMACS the constraint communication setup is redeter-
mined every time the decomposition changes, which is
usually every 5-10 integration steps. Every cell has a list
of all the constraints in the whole system. Each cell can then
determine of which nonlocal atoms it needs the coordinates
for connected constraints that cross the cell boundaries. The
list of required atoms is first sent one cell forward and
backward in thex direction. Atoms in the received list that
are locally present are marked, and the rest, in addition to
the locally required atoms, are sent forward and backward
one cell in they direction. The same procedure is repeated
for the z direction. In the opposite order and direction the
cells send and accumulate the found atom indices. Each cell
can then determine if all required atoms have been found.
Before each LINCS iteration the last part of the procedure
is repeated but then with the coordinates instead of the atom
indices. This results in a maximum of 6 communication steps
per iteration. For a machine with two-way network connec-
tions the forward and backward calls can be overlapped. The
required bandwidth will be quite low compared to the
latency. The passing of coordinates through other cells leads
to little overhead, since these are usually small in number,
and often these coordinates are also required by the cells
they pass through.

IV. Benchmarks
It is difficult to assess the accuracy of MD simulations of
biomolecular systems. Ideally one would want to check how

Figure 1. Example of the parallel setup of P-LINCS with one
molecule split over three domain decomposition cells, using
a matrix expansion order of 3. The top part shows which atom
coordinates need to be communicated to which cells. The
bottom parts show the local constraints (solid) and the
nonlocal constraints (dashed) for each of the three cells.
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accurate the generated ensemble is, but for proteins and even
for peptides of more than a few amino acids it is computa-
tionally infeasible to sample the full phase space. A constraint
algorithm should, of course, accurately set the constraint
lengths. But how accurate is accurate enough, a relative error
of 10-4, or maybe 10-6? An easy quantitative check is the
accuracy of energy conservation. But also for this quantity
is it difficult to judge what value is required. For micro-
canonical simulations one can easily determine how much
drift in the total energy one can allow over the total
simulation time. But most simulations are performed in the
canonical or constant-NPT ensembles. Here the thermostat
will effectively compensate for energy changes due to (small)
integration errors. How much energy drift can be allowed is
therefore unclear. Also one should keep in mind that Verlet
type integrators perfectly conserve energy for harmonic
potentials for any and therefore also unrealistically large,
integration step size. This means that for the accuracy of
especially simulations without bond constraints one cannot
rely on energy conservation as a measure of integration
accuracy.

It is clear that a good algorithm should be able to reach
any energy conservation value required by the user. To
demonstrate this for LINCS, we simulated the actin-binding
domain of villin headpiece (36 residues) with the OPLS all-
atom force field.17 To avoid cutoff artifacts all simulations
were performed in vacuo without cutoffs. To ensure the same
conditions for all LINCS accuracies, canonical simulations
at 300 K were performed using a Nose-Hoover thermostat,
implemented in GROMACS with a reversible leapfrog
integrator.18 The period of the temperature oscillations was
set to 2 ps. The energy conservation accuracy is obtained
from the drift of the conserved energy quantity in Nose-
Hoover dynamics. The results for LINCS and SHAKE for
simulations of 1 ns are shown in Table 1. One can see that
with a logarithmic increase in computational effort the
accuracy of LINCS can be increased to a finally unmeasur-
able drift over 1 ns in double precision. The amount of drift
can be compared to another common source of drift, namely
cutoff artifacts. Often plain cutoffs are use for nonbonded
interactions, mainly for reasons of computational efficiency.
A plain cutoff for the Lennard-Jones interactions of 0.9-
1.1 nm with a neighbor-list update interval between 10 and
20 fs introduces energy into the system at a rate of of 1-10
kBT/ns per degree of freedom. Reaction-field electrostatics
produces 1 order of magnitude more drift.

The amount of time spent in the constraint algorithm is
relatively high in this system. For a protein in solvent the
relative time for LINCS will be a factor of 2-4 lower. In
single precision it does not make sense to increase the order
of matrix expansion above 6, since all further terms in the
matrix are beyond the numerical precision compared to the
first terms. Already for the case with two iterations and
expansion order 6 the energy drift is unmeasurable in single
precision, whereas in double precision there is a clear,
although very small, negative drift. This is because in single
precision numerical rounding errors cancel the small analyti-
cal error of the LINCS algorithm. The effect of the old way
of constraining the velocities, using the changes in coordi-

nates, can only be observed for these same settings. LINCS
is computationally slightly more efficient than SHAKE, but
this difference can probably be overcome by using over-
relaxation.19 When the original LINCS paper was written, a
decade ago, LINCS was a factor of 4 faster than SHAKE.
This difference has become much smaller, because modern
processors can more efficiently execute code with conditional
statements such as SHAKE.

A clear advantage of LINCS over SHAKE is its stability
at large time steps. To show the performance of LINCS with
large time steps villin was simulated with all hydrogens
replaced by virtual sites or angle constraints10 with time steps
of 2, 4, and 5 fs. The results are shown in Table 2. For
maintaining the constraint and integration accuracy with
increasing time step, the order of the expansion and/or the
number of LINCS iterations need to be increased. This also
increases the computational effort slightly, but LINCS still
takes a negligible amount of the total run time.

To illustrate the performance of P-LINCS, T4-lysozyme
in a rectangular box of 5.2× 6.7 × 5.2 nm 3 with 5000
SPC water molecules20 and 8 Cl- ions was simulated with

Table 1. Accuracy of the LINCS Algorithm Applied to
Villin with a Time Step of 2 fs in Single and Double
Precision as a Function of the Number of Iterations Ni and
the Order of the Expansion, in Terms of the Relative
Root-Mean-Square Deviation (RMSD) of the Constraint
Lengths and the Drift of the Conserved Energy in kBT per
Degree of Freedoma

prec. Ni order
tol.,
10-4

RMSD,
10-4

energy
drift,
ns-1

time,
ms

time,
%

LINCS single 1 4 0.27 -1.59 0.14 3.9
single 1 6 0.11 -0.34 0.17 4.8
single 2 6 0.02 0.00 0.24 6.5
double 2 6 0.012 -0.03 0.30 4.8
double 2 8 0.003 0.00 0.35 5.6

LINCS single 1 4 0.27 -1.60 0.15 3.9
old single 1 6 0.11 -0.35 0.17 4.8
v corr. single 2 6 0.02 -0.08 0.24 6.5
SHAKE single 1.00 -2.06 0.15 4.3

single 0.10 -0.06 0.22 6.1
double 0.10 -0.14 0.28 4.6
double 0.01 -0.01 0.39 6.2

a The last column shows the CPU time spent in the constraint
algorithm per step and as a percentage of the total run time. For
comparison LINCS with the old, inaccurate velocity correction and
SHAKE with difference relative constraint tolerances are also shown.
Benchmarks were performed on one core of an Intel 2.4 GHz Core
2 CPU.

Table 2. As Table 1, but Only for LINCS in Single
Precision for Villin with Virtual Interaction Sites

∆t Ni order
RMSD,

10-4
energy drift,

ns-1
time,
ms

time,
%

2 1 4 0.22 -1.26 0.10 2.5
2 1 6 0.08 -0.23 0.13 3.7
4 1 6 0.31 -1.67 0.13 3.7
4 2 6 0.03 -0.15 0.18 5.1
5 1 6 0.50 -3.07 0.13 3.7
5 2 6 0.05 -0.26 0.18 5.1
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the GROMOS 53a6 force-field21 with united aliphatic
carbons. To create a computationally demanding test case
for P-LINCS, a plain cutoff of 1.1 nm was used for the
Lennard-Jones interaction and the reaction-field electrostatics,
with a neighbor-list update every 20 fs. These settings do
not lead to very good energy conservation. Tapered cutoffs
and/or particle-mesh Ewald electrostatics provide much better
energy conservation, but are, in the GROMACS package,
computationally roughly twice as expensive, since tabulated
instead of analytical potentials need to be used. This will
lower the relative computational cost of P-LINCS and is
therefore a less demanding benchmark for P-LINCS.

Timings for P-LINCS only and the complete simulation,
without and with virtual sites, are shown in Table 3 using a
preliminary version of the GROMACS 4.0 package with
load-balanced domain decomposition. The order of the
expansion for P-LINCS needs to be adjusted with increasing
time step, which leads to a marginally higher computational
cost. The time for the constraint algorithm includes the time
used by SETTLE for the water molecules. This combination
of algorithms does not cause load imbalance, since SETTLE
does not communicate and is done after P-LINCS. Processors
that have a lot of water molecules to constrain have less
protein constraints, and the two algorithms roughly balance
out during the last LINCS iteration. One can see that the
time for P-LINCS increases with an increasing number of
processors/cells. This is not due to the extra constraints across
the cell boundaries but nearly only due to communication.
When going from 4 to 32 processors the domain decomposi-
tion goes from 1D to 3D, requiring from 1 to 3 communica-
tion steps per iteration. Since the time for a communication
step in P-LINCS, which is latency bound, stays nearly
constant, the P-LINCS time increases with the dimensionality
of the domain decomposition. However, even on 32 proces-
sors P-LINCS still only takes 10% of the computation time.
This number will halve when more accurate cutoff schemes
are employed, even when an extra P-LINCS iteration is used
for more accuracy. For comparison LINCS results are shown
with particle decomposition on 4 processors, which is slightly
slower than domain decomposition. Particle decomposition
without parallel constraints is limited to 4 processors, since
already on 5 processors there is a load imbalance when one
processor needs to take care of the whole protein. It should
also be noted that with a time step of 5 fs the neighbor list
is updated every 4 steps, which is costly. In practice one
would increase the neighbor-list cutoff and decrease the

neighbor-list update frequency to improve perform ace. This
was not done here to keep the simulations comparable.

As mentioned before, the P-LINCS communication is
latency limited. For the lysozyme system with a matrix
expansion order of 6, the number of atoms to be com-
municated between the different cell boundaries varies
between 0 and 330 for 4 cells and between 0 and 130 for 16
or 32 cells. This means that in single precision the largest
message is 4000 bytes for 4 cells and 1600 bytes for 16 or
32 cells. With an all-atom force field there are twice as many
constraints, and, therefore, the numbers double. With hy-
drogen angle vibrations removed the numbers are twice as
small, also for an all-atom force-field, since most constraints
involving hydrogens dissappear. For such message sizes the
communication is latency limited on any system. The
message size depends mainly on the cell size. As the cell
size increases, the message size also increases. Thus for large
cells the communication may no longer be latency limited.
But since the computational cost for the forces and con-
straints is proportional to the volume of the cell and the
number of atoms for constraint communication proportional
to its surface, the P-LINCS communication will never be a
limiting factor.

V. Conclusions
P-LINCS is a parallel constraint algorithm which gives
(binary) identical results to the nonparallel algorithm LINCS.
It therefore has the same high stability. Its implementation
on top of LINCS is straightforward, requiring only the coding
of some bookkeeping and communication. The treatment of
uncoupled angle constraints has been improved compared
to the original version of the LINCS algorithm. The
computational cost of P-LINCS increases with the dimen-
sionality of the domain decomposition grid, since the
communication is latency limited. But the time spent in
P-LINCS is negligible on the total run time. The computa-
tional cost increases logarithmically with the required ac-
curacy. For a typical protein simulation with the GROMACS
package the total cost of P-LINCS with full 3D domain
decomposition is between 4% and 10%, depending on the
treatment of the electrostatics. In other packages this could
be significantly less, since in GROMACS the force calcula-
tion is very efficient due to assembly SSE/SSE2 force loops.

Acknowledgment. The author thanks David van der
Spoel and Erik Lindahl for stimulating discussions.

Table 3. Performance of P-LINCs on Lysozyme in Water (See Text for Details) without and with Virtual Sites as a Function
of the Time Step (∆t) and the Number of Domain Decomposition Cells, except for pd4 Which Is Particle Decomposition over
4 Processorsa

constraint time (ms) speed (ns/day)

virtual sites ∆t, fs Ni order RMSD, 10-4 1 pd4 4 16 32 1 pd4 4 16 32

no 2 1 4 0.21 2.4 2.4 3.8 5.7 8.8 3.0 10.2 11.8 41 70
yes 2 1 4 0.26 2.3 2.3 3.3 4.9 7.6 3.0 10.2 11.8 40 69
yes 2 1 6 0.07 2.5 2.5 3.6 5.9 9.0 3.0 10.2 11.6 40 67
yes 4 1 6 0.29 2.5 2.5 3.6 5.9 9.0 5.3 18.1 21.2 70 117
yes 5 1 6 0.47 2.5 2.5 3.6 5.9 9.0 6.3 21.5 25.1 83 137

a RMSD is the relative deviation of the constraint lengths, constraint time gives the time used by the constraint algorithms (LINCS/P-LINCS
plus settle for water) in one integration step summed over all the processors, and speed is the simulation time per day. Benchmarks were
performed on a 2.2 GHz AMD64 cluster with Infiniband interconnects.
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TD-DFT Performance for the Visible Absorption Spectra
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Abstract: The π f π* transitions of more than 100 organic dyes from the major classes of
chromophores (quinones, diazo, ...) have been investigated using a Time-Dependent Density
Functional Theory (TD-DFT) procedure relying on large atomic basis sets and the systematic
modeling of solvent effects. These calculations have been performed with pure (PBE) as well
as conventional (PBE0) and long-range (LR) corrected hybrid functionals (LC-PBE, LC-ωPBE,
and CAM-B3LYP). The computed wavelengths are systematically guided by the percentage of
exact exchange included at intermediate interelectronic distance, i.e., the λmax value always
follows the PBE > PBE0 > CAM-B3LYP > LC-PBE > LC-ωPBE > HF sequence. The functional
giving the best estimates of the experimental transition energies may vary, but PBE0 and CAM-
B3LYP tend to outperform all other approaches. The latter functional is shown to be especially
adequate to treat molecules with delocalized excited states. The mean absolute error provided
by PBE0 is 22 nm (0.14 eV) with no deviation exceeding 100 nm (0.50 eV): PBE0 is able to
deliver reasonable estimates of the color of most organic dyes of practical or industrial interest.
By using a calibration curve, we found that the LR functionals systematically allow an even
more consistent description of the low-lying excited-state energies than the conventional hybrids.
Indeed, linearly corrected LR approaches yield an average error of 10 nm for each dye family.
Therefore, when such statistical treatments can be designed for given sets of dyes, a simple
and rapid theoretical procedure allows both a chemically sound and a numerically accurate
description of the absorption wavelengths.

I. Introduction
Though dyes could be classified with respect to the chemical
process generating the color (absorption/fluorescence/

phosphorescence) or to the nature of the implied excited
states (π f π*/n f π*), one generally groups them
according to the nature of their chromophoric unit (Figure
1).1-3 The two major families of organic dyes with industrial
applications are 9,10-anthraquinones (AQ) and azobenzenes
(AB), that represents about 30% and 60% of today’s world
dye production, respectively.1-3 The longest wavelength of
maximal absorption (λmax) of AQ covers all the visible region
of the electromagnetic spectrum, depending on the nature
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and position of the auxochromic group(s) substituting posi-
tions 1-to-8.2,4 AB are extremely versatile,3 with applications
going from core of media storages,5 to central building blocks
in molecular motors.6,7 Of course, several other chromophores
related to more specific applications can be pinpointed: (1)
naphthoquinones (NQ), implied in several medicinal pro-
cesses;8,9 (2) coumarins (CO), the most efficient fluorescent
brighteners;10 (3) diphenylamine derivatives (DPA), the
typical hair dyes with important biological properties;11,12

(4) diarylethenes (DA), the prototype molecular switch;13-15

and (5) indigoids derivatives (IG, Figure 2) which give loads
of structures with several substitution patterns of the outer
phenyl rings, of the heteroatoms, as well as different types
of linkage between the two parts of the molecule.3 Develop-
ing molecular modelization approaches allowing an accurate
prediction of the color of dyes is still a major challenge,16

because, on the one hand, the average human eye is able to
tell apart shades differing by 1 nm only, and, on the other
hand, actual stains are medium-sized molecules, possess a
dozenπ-electrons, and are very sensitive to the environments.
Therefore, large-scale highly correlated ab initio approaches
such as EOM-CC, MR-CI, or CAS-PT2 remain out of
today’s computational reach. Consequently, one could be
inclined to select customized semiempirical approaches such
as ZINDO, but the consistency of such schemes is often
disappointing.17-19 Currently, the most widely applied ab

initio tool for modeling electronic spectra of structures is
the time-dependent density functional theory (TD-DFT).20

TD-DFT calculations can incorporate environmental effects21

and quickly give UV/vis spectra for most organic22-25 and
inorganic26,27 dyes. Still, meaningful results can only be
attained with a selection of adequate exchange-correlation
functionals. It is recognized that conclusions obtained with
hybrid functionals tend to be in better agreement with
experimental trends than the values computed with pure
functionals. Hybrids, originally proposed in the 1990s,28,29

include a fraction (R) of exactexchange that is computed
with the Hartree-Fock (HF) exchange formula.28-40 Despite
their countless successes, hybrids also encounter problems
that seem (mostly) independent of the functional selected.
Typical troublesome properties include van der Waals
forces,41 bond length alternation (BLA) in semiconducting
polymers,42,43 nonlinear optics (NLO) properties of long
π-conjugated chains,44,45 and charge-transfer electronic
transitions.17,46-49 In these four cases, no singleR value
provides a small (or consistent) error for increasingly large/
spaced compounds. In fact, these DFT limitations have a
common origin: the so-called shortsightedness of DFT
functionals. In other words, the density is not influenced by
a change in the nearby electronic distribution.44,47,48 To
circumvent these shortcomings, several strategies have been
designed and applied to the problems listed above: the
correction(s) of the self-interaction error,50-52 the inclusion
of the current-density in the formalism,53,54 the addition of
empirical dispersion terms,55,56 and the use of optimized
effective potential for exact exchange57,58 as well as the
explicit consideration of long-range effects (LR).59-86 This
latter scheme leads to therange-separatedhybrids that use
a growing fraction of exact exchange when the interelectronic

Figure 1. Sketch of the chromophores investigated in this
study.

Figure 2. Studied indigoids derivatives.
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distance increases (see section II). In contrast, the hybrids
in which the amount of HF exchange is constant all over
the space will be referred to asglobal hybrids in the
following (conVentionalor full-range exchangehybrids have
also been used in the literature). It has been demonstrated
that range-separated hybrids are very efficient for calculating
BLA82 or NLO61,67,68,82,83,87properties in conjugated polymers
as well as for determining properties of weakly bond
complexes64,70,85or charge-transfer states in large molecular
systems.64,68,74-77,81Nevertheless, there have been only a few
works establishing the abilities of TD-LR-DFT to reproduce
experimental UV/vis spectra for a statistically meaningful
set of compounds: (1) comparisons of global and range-
separated functionals performances for the vertical transitions
of CdO, N2, C2H4, H2O, C6H6, and H2CdO demonstrated
that, while Rydberg’s states are much better described with
the latter, differences remain small for valence excited
states;64,73,85(2) the emission properties of low-lying excited-
states of small molecules have also been investigated, and
similar conclusions have been drawn;74 (3) we have studied
the localizedn f π* transitions in nitroso and thiocarbonyl
dyes, and it turned out that all hybrid functionals lead to a
quite similar accuracy;88 (4) the λmax of four CO dyes are
more accurate with global TD-DFT than with (unmodified)
TD-LR-DFT;84 (5) for theπ f π* transitions of 15 AQ, it
has been found that range-separated hybrids are further away
from experimental values than their global counterparts but
offer a much smaller statistical dispersion of the results,
allowing more valid chemical insights;82 and (6) on the
contrary, TD-LR-DFT brings no significant correction for
cyanine derivatives, as these dyes present a strong multide-
terminantal nature.82

In this paper, we perform a critical assessment of the
efficiency and consistency of range-separated hybrids for
computing the mainπ f π* transition of industrial organic
dyes. The generic chromophores we have considered are
depicted in Figure 1. It is worth pointing out previous TD-
DFT investigations for these compounds. For AQ, the
performance of global hybrids has been assessed in refs 19,
22, 46, and 89-93, while our previous work used TD-LR-
DFT.82 Numerous computations of the UV/Visible spectra
of AB based on TD-DFT have been published,46,94-98 but to
our best knowledge none used range-separated hybrids. NQ,
DPA, and IG have recently been tackled by two of us in
refs 99, 100, 101, and 102-105, respectively. For CO, one
findsseveral investigationsperformedwithglobalhybrids,106-113

but only one used range-separated functionals and was
limited to four molecules.84 The transition spectra of the
photochromic DA switches have also been thoroughly
investigated, though only with global hybrids.15,18,114-123 In
fact, the molecules in Figures 1 and 2 include most of the
families selected by Guillaumont and Nakamura46 (we
excluded cyanine-like dyes that present a multideterminental
nature) but with (much) more structures in each subset.

This paper is organized as follows. In section II, we briefly
summarize our computational approach. In section IIIA, the
spectra of the various families computed with several pure,
global, and range-separated hybrids are compared to experi-
mental data. In section IIIB, we examine the possibilities of

statistical treatment of the theoreticalλmax, before concluding
in section IV.

II. Methodology
In range-separated functionals, the Coulomb operator is
partitioned as59,60,63,65

whereω is the range separation parameter, whileR andR
+ â define the exact exchange percentage atr12 ) 0 andr12

) ∞, respectively. In eq 1, 0e R + â e 1, 0 eR e 1, and
0 e â e 1, are three conditions to be satisfied. Equation 1
leads to the partitioning of the total exchange energy into
short-range and long-range contributions:

In this paper, three range-separated functionals have been
used: (1) the LC (LC: long-range correction) scheme of
Hirao61 applied to the PBE functional,124 (2) the LC-ωPBE
functional by Vydrov and Scuseria,77 and (3) Handy’s CAM-
B3LYP (CAM-B3LYP: Coulomb-attenuating method ap-
plied to B3LYP).65 Both LC models useR ) 0 andâ ) 1
in eq 1, i.e. short-range semilocal DFT exchange is combined
with long-range HF exchange integrals. SinceR + â ) 1,
the exchange potential in LC functionals has the exact
asymptotic behavior. Note that in LC-ωPBE, the short-range
exchange functional can be rigorously derived62,125 by
integration of the model exchange hole.77,78In CAM-B3LYP,
R ) 0.19 andâ ) 0.46 are plugged in, and the exact
asymptote of the exchange potential is lost, while a larger
percentage of HF exchange is included at short range. The
range separation parameter,ω in LC-PBE and CAM-B3LYP,
is set to the standard 0.33 bohr-1 value, whereas for LC-
ωPBE, we use the optimized 0.40 bohr-1 value from refs
77 and 78. Recently, such 0.40 bohr-1 value has been
advocated by Fromager and co-workers,86 whereas Hirao et
al. proposed a reoptimized value of 0.47 bohr-1 for reaction
barriers.126 As our goal is to assess the merits of range-
separated and global hybrids for visible spectra simulations,
we have also performed time-dependent calculations with a
pure functional (PBE),124a global hybrid (PBE0, that contains
25% of exact exchange),33,34 and the HF approach (in this
paper HF results are obtained through the TD-HF approach).
Readers interested in the results of other global hybrids, such
as the archetype B3LYP, are refered to 89 for AQ, 109 for
CO, and 105 for IG. The evolution withr12 of the exact
exchange percentage used in the six considered models is
sketched in Figure 3All calculations have been performed
with the Gaussian03 suite of programs,127 except for the LR-
DFT calculations that were carried out with a development
version of Gaussian,128 using their standard TD-DFT pro-
cedure (ref 129). For each system, the ground-state structure
has been determined by a standard force-minimization pro-
cess, and the vibrational spectrum has been determined to
systematically check that all vibrational frequencies are real.
All these ground-state calculations have been performed with
PBE0 using a triple-ú polarized basis set, 6-311G(d,p), that

1
r12

)
1 - [R + â erf(ωr12)]

r12
+

R + â erf(ωr12)

r12
(1)

Ex ) Ex
sr + Ex

lr (2)
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is known for providing converged ground-state structural
parameters for the largest majority of the compounds.130-132

In previous investigations, we have demonstrated that PBE0/
6-311G(d,p) geometries are perfectly adequate for most
classes of organic dyes investigated here,18,99,101-105,122and
we refer the interested readers to these publications for
discussion of the basis set effects. TD-DFT is then used to
compute the three-to-eight first low-lying excited states of
each dye. The resulting electronic excitations have a strong
π f π* character associated with a large oscillator force.
We have systematically selected the 6-311+G(2d,p) basis
set for these TD-DFT calculations, as it yields perfectly
convergedλmax for IG,102,103DPA,101 NQ,99 and DA18,122dyes.
For AQ, a smaller basis set would even be enough to attain
the saturation of transition energies.89,90 Therefore, we are
very confident that all results presented here would not have
been significantly affected by a further extension of the basis
sets. At each step, the surrounding effects have been included
by means of the Polarizable Continuum Model,133 as valuable
theory/experiment comparisons indeed require simulation of
the solvent. Two models have been used the default IEF-
PCM and the conducting PCM model (C-PCM). Computa-
tional details might slightly vary from one dye family to
another (radii used to build the cavity, use of smoothing
spheres, etc.) because we have set these computational
parameters in order to maintain consistency with previously
published data. Nevertheless, this should have a completely
negligible impact on the computed wavelengths.101 In this
paper, we have selected the so-called nonequilibrium pro-
cedure for TD-DFT calculations, that has been specifically
designed for the study of absorption processes.21

In many cases, several experimental values are available,
and the values reported in Tables 1-5 correspond to the
average measure. The selection of the theoretical wavelength
is often straightforward: it is the first transition with a
significant oscillator force.19,99-105,110,123In fact, to perfectly
simulate experimental results, the main missing components
are the vibronic couplings. Indeed, in some cases, the
inclusion of Franck-Condon factors could be essential to

get the best theory/experiment match.113 However, a sys-
tematic computation of such vibronic effects is not practically
feasible for our very extended set.

III. Results
A. Comparisons with Experiments.Theλmax computed for
24 typical AQ dyes are reported in Table 1. For all com-
pounds, the absorption wavelengths systematically obey:
PBE> PBE0> CAM-B3LYP > LC-PBE> LC-ωPBE>
HF. This means that the larger the exact exchange ratio at
intermediater12 (see Figure 3), the smaller the calculated
λmax. For nitroso and thiocarbonyl compounds, such a
systematic relationship could not be unravelled,88 probably
due to the more localized nature of the transition in thesen
f π* chromophores: the mixing percentage at smaller
distances had a larger influence. Consistently with our
previous studies,19,82,89,90 PBE0 yieldsλmax in very good
agreement with experimental trends for the short-wavelength
dyes, but the discrepancies significantly increase for the
compounds with the smallest transition energies. Indeed, in
the lower part of Table 1, it is PBE that yields the best
estimates. For the 24 AQ, we obtain mean signed errors
(MSE, experiment-theory) of 127,-71, 12, 67, 85, and 53
nm for HF, PBE, PBE0, LC-PBE, LC-ωPBE, and CAM-
B3LYP, respectively. The corresponding mean absolute
errors (MAE) amount to 127, 74, 19, 67, 85, and 53 nm,
indicating that LR-DFT and HF systematically underestimate
the λmax. Consistently with the findings of ref 82, PBE0 is
clearly closer to experiment, with a MAE less than half of
the second competitor, namely CAM-B3LYP. However, the
ordering of the compounds is also crucial for an efficient
molecular design. Range-separated functionals provide the
valid 1,4-OH > 1-NH2 classification whereas PBE0 does
not, but the reverse situation also appears (1,2-OH versus
1,8-OH), and cases can also be noted in Table 1 for which
all approaches fail (2-OMe versus 1,2-OMe).

The situation differs in Table 2 where the spectra of
AB derivatives are listed. Model and real-life AB have
been considered, though we have not included OH substit-
uents in the panel as such hydroxy-AB tend to undergo
tautomerism that might impede straightforward theory/
experiment comparisons. On the contrary, several push-pull
molecules (4-NO2, 4′-NH2, and alike) having a strong
charge-transfer character are tackled in Table 2. As for AQ,
the methodological ordering ofλmax follows the amount of
exact exchange at medium interelectronic distance. Never-
theless, CAM-B3LYP has now a slight edge over PBE0,
and the accuracy difference between theλmax obtained with
global and range-separated approaches becomes less striking
than for the AQ listed in Table 1. Indeed, we obtain MAE
(MSE) of 64 (64) nm, 90 (-90) nm, 25 (-20) nm, 33 (33)
nm, 46 (46) nm, and 20 (15) nm for HF, PBE, PBE0,
LC-PBE, LC-ωPBE, and CAM-B3LYP, respectively. In
fact CAM-B3LYP is particularly efficient for structures
presenting a smallλmax, and the theory/experiment discrep-
ancy tends to increase when going down the column. Note
that for both AB having aλmax > 500 nm, PBE0 is closer
to the experimental reference than the three range-separated
functionals: the description of charge-transfer dyes is not

Figure 3. Evolution of the percentage of exact exchange
included as the function of the interelectronic distance for the
six models considered.
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systematically improved by inclusion of LR terms. Finally,
the molecular ordering is generally correct although one
noteworthy mismatch could be detected (6′-OBu,2,6-NH2,
3,3′-azopdipyridine versus 4,4′-NH2): all approaches, but
LC-ωPBE, disagree with experiments.

Table 3 summarizes our results for a 12 NQ set containing
several 2,3-substituted structures that are known to be
particularly problematic for global hybrids.100 For these dyes,
CAM-B3LYP outperforms PBE0, but the reverse is true for
NQ with auxochroms at positions 5 and 8. One can also note

Table 1. 9,10-Anthraquinone (AQ) Main Visible Transition, Obtained with the IEF-PCM-TD-X/6-311+G(2d,p)//
IEF-PCM-PBE0/6-311G(d,p) Approacha

subst solvent HF PBE PBE0 LC-PBE LC-ωPBE CAM-B3LYP exp ref

none ethanol 250 377 321 280 271 294 322 4
2-Me ethanol 252 380 324 282 272 296 324 4
1-Me ethanol 259 399 339 291 280 306 331 4
2-Ome ethanol 286 491 391 328 312 348 363 4
1,2-OMe ethanol 279 482 386 323 307 341 374 4
1-Ome ethanol 279 480 387 333 317 347 378 4
2-OH ethanol 285 507 389 327 311 347 378 4
1-OH ethanol 291 479 398 347 330 360 402 4
1,2,3-OH ethanol 284 471 395 346 328 359 414 4
1,3-OH ethanol 297 491 408 357 339 371 418 4,136
1,8-OH ethanol 302 505 419 368 349 380 429 4
1,5-OH ethanol 300 502 417 361 343 376 432 4
1,5-OH,3-Me ethanol 299 498 415 360 342 374 433 137
1,2-OH ethanol 299 524 426 359 340 376 435 4,136
1,3,8-OH,6-Me ethanol 309 522 433 381 360 394 436 4
2-NH2 ethanol 311 587 459 370 349 396 449 138
1,3,6,8-OH ethanol 316 548 451 394 371 408 452 4
1-NH2 ethanol 327 557 463 394 374 413 476 138
1,4-OH ethanol 336 530 456 408 389 418 480 4
1,2,4-OH ethanol 332 534 456 406 387 417 483 4
1,4,5-OH ethanol 343 549 469 420 399 430 489 4
1,4,5,8-OH ethanol 365 587 504 454 431 464 560 4
1,4-NH2 ethanol 404 577 522 474 456 486 592 136
1,4-NHEt ethanol 437 626 568 516 496 528 642 10
a PBE0 values are taken from ref 19. All values are in nm.

Table 2. λmax (nm) of Azobenzenes (AB) Computed with the C-PCM-TD-X/6-311+G(2d,p)//C-PCM-PBE0/6-311G(d,p)
Scheme

subst/compound solvent HF PBE PBE0 LC-PBE LC-ωPBE CAM-B3LYP exp ref

none EtOH 297 377 342 310 300 325 320 139
4-F EtOH 295 381 345 313 302 326 320 139
4-Me EtOH 301 388 350 316 306 331 323 139
4-Br EtOH 300 403 355 316 305 332 325 139
4,4′-F EtOH 294 386 347 315 304 328 325 139
4,4′-Br EtOH 303 425 367 322 310 339 326 139
4-phenylazomaleinanil CHCl3 302 406 357 318 308 334 329 2
4,4′-Me EtOH 304 396 357 322 311 337 330 139
4-OMe EtOH 306 414 366 329 318 343 344 136,139
4,4′-OMe EtOH 312 433 380 341 329 356 355 136,139
4-NH2 MeOH 330 445 399 360 348 375 386 2
4,4′-NH2 EtOH 342 475 422 377 363 394 399 136
4-NMe2 MeOH 334 477 418 371 357 387 408 2
4-NHPh EtOH 335 524 438 372 357 394 411 2
6′-OBu,2,6-NH2,3,3′-azopdipyridine MeOH 330 442 401 377 366 383 435 2
2′-NH2-azobenzenenaphthalene MeOH 376 496 451 411 397 427 439 2
4-NO2, 4′-NH2 50% EtOH 365 603 483 402 389 428 443 2
2,4-NH2-azobenzenenaphthalene EtOH 338 476 441 381 370 386 451 2
4-NO2, 4′-N(Et)(CH2CH2CN) MeOH 358 629 492 399 384 428 455 2
4-NO2, 4′-NHPh 50% EtOH 363 700 527 408 392 442 483 2
4-NO2, 4′-N(Et)(CH2CH2OH) 50% EtOH 369 662 513 415 399 443 503 2
4-NO2, 2-Cl,4′-N(Et)(CH2CH2OH) 50% EtOH 372 666 525 425 410 467 517 2
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systematic inversions (2,3-Cl versus 2-OH), but none of the
proposed approach allows aλmax classification clearly more
appealing. Indeed, depending on the compounds, smaller
(2,6-OH versus 5-OMe) or larger (2-NHMe,3-Cl versus
2-OMe,5,8-OH) proportion of exact exchange might help.
Going from left to right in Table 3, we obtain MAE of 119,

99, 22, 42, 64, and 28 nm (the MSE are 119,-99,-11, 42,
64, and 26 nm). These values are in the line of the results
obtained for AQ, although differences between PBE0 and
CAM-B3LYP are strongly reduced for NQ.

The spectral data obtained for 10 neutral and charged CO
are given in Table 3. The evaluation of the visible spectra

Table 3. First π f π* Transition in 1,4-Naphthoquinone (NQ, C-PCM, Top) and Coumarins (CO, IEF-PCM, Bottom)a

subst solvent HF PBE PBE0 LC-PBE LC-ωPBE CAM-B3LYP exp ref

1,4-Naphthoquinone
2,3-Cl methanol 258 412 349 296 283 316 337 140
2-OH chcl3 252 384 328 287 276 303 338 4,141
2,6-OH ethanol 307 512 427 379 357 397 390 136
5-OMe CHCl3 281 521 411 350 330 368 396 4,141
2,3-Me,6-NH2 cyclohexane 306 586 457 382 357 409 410 142
3,5-OH CHCl3 300 480 408 368 349 379 419 4,141
2,5-OH CHCl3 303 522 431 381 357 394 430 4,141
2,3-OH CHCl3 322 582 478 434 401 443 439 4,141
2-NHMe,3-Cl cyclohexane 320 619 494 434 399 449 454 143
2-OMe,5,8-OH CHCl3 353 554 481 430 408 442 475 141
2-Cl,5,8-OH CHCl3 359 561 495 440 418 454 494 141
5-NH2, 8-Ome cyclohexane 361 599 515 464 438 479 564 142

Coumarins
4,7-OH (enol) methanol 249 316 287 274 269 278 309 144
4-Me (enol) ethanol 256 323 291 274 268 279 309 145,146
4-Me,7-OMe (enol) water 260 340 303 285 278 290 322 147,148
4-Me,7-OH (enol) water 261 337 303 284 277 288 323 147-150
7-OMe (enol) water 266 341 306 290 283 295 324 151,152
4-Me,7-OH (cation) water 274 374 330 307 301 312 345 147,149
4-Me,7-OMe (cation) water 273 376 328 309 302 314 352 147
3-CN,7-OH (enol) methanol 284 363 331 315 308 319 355 153
4-Me,7-OH (anion) water 296 405 360 338 330 344 360 149,154,155
3-CN,7-OH (anion) water 315 398 369 363 357 363 408 153

a All values are obtained through the PCM-TD-X/6-311+G(2d,p)//PCM-PBE0/6-311G(d,p) and are in nm. PBE0 values are from refs 99, 100,
and 110 for NQ and CO, respectively.

Table 4. Diphenylamine (DPA, C-PCM, Top) and Diarylethenes (DA, IEF-PCM, Bottom) λmax (nm), Obtained with the
PCM-TD-X/6-311+G(2d,p)//PCM-PBE0/6-311G(d,p) Schemea

diphenylamine

subst solvent HF PBE PBE0 LC-PBE LC-ωPBE CAM-B3LYP exp ref

none hexane 248 320 284 273 265 280 286 156
4-NO2 hexane 270 442 364 319 307 339 358 156-160
2,2′,4,4′-NO2 ethanol 290-245 494-462 409-358 362-305 346-295 380-323 402-358 136,140,161
4,4′-NO2 methanol 296 499 412 354 340 380 404 162
2,4′-NO2 ethanol 296-258 532-455 434-364 370-310 352-300 397-331 407-353 161,163,164
2,4-NO2 hexane 273-251 490-417 393-343 344-299 327-288 361-318 411-340 159
2-NO2 hexane 289 497 416 364 346 384 415 156,158-160
2,2′-NO2 hexane 286 509 417 362 343 383 420 158
2,6-NO2 methanol 286 514 419 355 349 379 424 162

diarylethenes

R1, R2 solvent HF PBE PBE0 LC-PBE LC-ωPBE CAM-B3LYP exp. ref

Cl, Cl Hex 385 541 485 432 410 448 444 165,166
Cl, Ph ACN 415 595 535 461 438 484 485 167
COOH,COOH MeOH 440 700 599 509 477 537 531 165,166
Ph, Ph Benz 456 687 605 507 479 537 531 165
COOEt,COOEt ACN 429 670 578 496 465 520 540 167
p-Pyr., p-Pyr. THF 468 744 636 525 494 559 551 168
CHO, CHO Benz 471 791 670 563 522 592 580 165,166
a PBE0 figures are from refs 101 and 88 for DPA and DA, respectively.
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of amino-CO is very challenging as both state-specific
solvation and vibronic coupling could play a significant
role.112,113Therefore, only hydroxy-CO are included in our
set. As for the other dyes, HF (PBE) provides the smallest
(largest)λmax and hybrids stand in between, with wavelengths
almost proportional to the exact exchange percentage at
intermediater12. For CO, PBE, and PBE0 yield about the
same accuracy but with opposite signed errors. Indeed the
MSE are 67,-17, 20, 37, 43, and 33 nm for HF, PBE, PBE0,
LC-PBE, LC-ωPBE, and CAM-B3LYP, respectively, while
the MAE is equal to the MSE but for PBE (19 nm). All
hybrids reproduce quite accurately the effect of protonation
with predicted bathochromic shifts of 25( 2 nm to be
compared to the experimental values of 22 (4-Me,7-OH-
CO) and 30 nm (4-Me,7-OMe-CO). A basic medium
modifies theλmax of 3-CN,7-OH-CO by 53 nm, that is
correctly reproduced by LC-PBE (48 nm) and LC-ωPBE (49
nm) but underestimated by HF (31 nm), PBE (35 nm), and
PBE0 (38 nm). However, for 4-Me,7-OH CO, all hybrids
exaggerate the impact of the enol-anion reaction.

Although DPA dyes show a significant charge-transfer
character, global hybrids like PBE0 provide very accurate
λmax probably because the distance between the electron
donor and the electron acceptor is rather small.101 Table
4 confirms this conclusion with a MAE of 8 nm for

PBE0 but 27 nm for CAM-B3LYP (other schemes pro-
duce even larger average errors). Some DPA present two
peaks, and the only drawback of PBE0 is that the separa-
tion between these two absorptions (∆λ) is 70 nm instead
of 54 nm for 2,4′-NO2-DPA but 50 nm instead of 71 nm
for 2,4-NO2-DPA. However, this problem cannot be cor-
rected by LR-DFT nor PBE nor HF. For the DA of Table 4,
that are characterized by a very delocalized first excited
state,123 we have the reverse situation with a large error
with PBE0 (MAE)64 nm), whereas LR-DFT are closer to
the experimental data, especially CAM-B3LYP that provides
a MAE of 8 nm and a maximal discrepancy limited to 20
nm.

Table 5 lists the results for more than 30 dyes of the IG
family. For thioindigo (XdX′dS) derivatives, the PBE0
functional has been found astonishingly efficient104 but is
less accurate for indigo (XdX′dNH) dyes for which B3LYP
was more adequate.103 In the indirubin/isoindigo series (IG-
e-IG-i), no global hybrid functional gives the correct ordering
of the compounds.105 In the IG-a series, modifying only the
X and X′ atoms leads to the followingλmax ordering (in the
nonpolar aprotic solvents used here): NMe,NMe> NH,-
NH > NH,S > Se,Se> S,S > O,O. This order is not
reproduced by HF (that predicts no difference between thio
and selenoindigo), nor PBE (that incorrectly foresees a bigger

Table 5. Indigoids (IG) Main Visible Transition, Obtained with a IEF-PCM-TD-X/6-311+G(2d,p)//IEF-PCM-PBE0/
6-311G(d,p) Schemea

structure subst solvent HF PBE PBE0 LC-PBE LC-ωPBE CAM-B3LYP exp ref

IG-a, XdX′dNH none CCl4 400 651 572 519 490 525 594 169-172
4,4′-Cl CHCl3 402 664 580 524 494 531 605 173,174
4,4′-aza EtOH 414 653 574 528 500 532 600 175
5,5′-NO2 TCE 383 637 550 503 475 507 580 176
5,5′-Br CHCl3 407 708 599 534 502 542 611 173,174
6,6′-NO2 TCE 433 820 647 553 522 571 635 176
6,6′-Br TCE 399 636 569 519 490 524 588 176-178
7,7′-Me CHCl3 406 671 586 527 498 534 612 174,179
7,7′-aza EtOH 370 624 539 490 461 494 556 175

XdX′dS none CHCl3 354 655 544 465 428 483 546 180-187
4,4′-Cl benzene 356 646 546 467 431 484 548 188
5,5′-NO2 benzene 348 634 531 461 425 475 513 189
5-OEt,5′-NO2 benzene 367 841 603 487 447 512 562 190
5-OEt,6′-NO2 benzene 377 888 631 497 456 526 578 191
6-NO2 benzene 365 725 572 477 439 499 561 191
7,7′-Br benzene 353 663 546 464 428 481 546 192

XdX′dNMe none benzene 430 692 602 556 526 557 644 193
XdX′dO none CycloHex 292 524 430 379 358 386 413 194
XdX′dSe none benzene 354 647 568 471 433 496 562 195,196
XdNH, X′dS none benzene 376 657 556 488 456 501 574 197
IG-b none CHCl3 339 560 494 448 415 454 505 185,186
IG-c none CHCl3 327 529 456 418 387 424 458 185-187,198
IG-d none CHCl3 323 550 472 427 392 434 467 187
IG-e none DMSO 324 438 395 366 353 374 413 134
IG-f none DMSO 346 582 490 438 415 446 516 134
IG-g none DMSO 329 556 444 371 357 391 455 134
IG-h, XdNH none DMSO 385 649 536 473 448 488 551 134
IG-h, XdS none Benzene 364 631 517 441 413 461 505 197
IG-i none DMSO 391 626 519 437 417 461 491 134
IG-j none methanol 256 368 325 298 290 305 355 199
IG-k none methanol 212 321 285 266 258 271 317 199

a More details can be found in refs 102-105.
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λmax for sulfur than amine-based compounds) nor PBE0 (that
reverses the order of XdX′dSe and XdNH, X′dS), but is
correctly predicted by the three range-separated functionals,
a significant chemical success. Of course, for these six
structures, the PBE0 wavelengths are always much closer
to experiment than LR-DFT. However, relative changes are
also better reproduced by LR-DFT. For instance, the
wavelength difference between the selenoindigo and oxy-
indigo is 3.0 times larger than the∆λmax separating indigo
and its N-Me form (149/50 nm). This ratio is exaggerated
by PBE0 (4.6) but reasonably reproduced by LC-PBE (2.5),
LC-ωPBE (2.4), and CAM-B3LYP (2.8). Concerning the
substitution of the outer-phenyl rings, all hybrid schemes
provide the correct ordering for thioindigo and indigo but
for some cases in which the experimental data are extremely
close (within 1 or 2 nm). In the Wille and Lu¨ttke “linkage”
series,134 all IG-e - IG-i, HF, PBE, PBE0, and CAM-B3LYP
invert IG-i and IG-f, whereas LC-PBE and LC-ωPBE predict
almost equal absorption wavelengths for these two dyes, that
is certainly a major improvement. A couple of thioindigo
structures104 for which PBE0 produces the largest errors (5-
OEt,5′-NO2 and 5-OEt,6′-NO2) are overcorrected by LR-
DFT, and even CAM-B3LYP undershoots theirλmax by about
50 nm, confirming that the description of charge-transfer
excited states is not systematically improved by range-
separated functionals. Overall, the MAE are 170, 96, 19, 70,
99, and 58 nm for HF, PBE, PBE0, LC-PBE, LC-ωPBE,
and CAM-B3LYP, respectively. This confirms the superiority
of PBE0 for absolute wavelength estimations although LR-
DFT appears to be authorized to give more consistent
chemical conclusions.

B. Statistical Treatment and Corrections. Statistical
analysis for the three main families (AQ, AB, and IG) and
the complete set of dyes are given in Table 6. A graphical
comparison is plotted in Figure 4 for the LC-ωPBE
functional. It is clear that HF (PBE) considerably undershoots
(overestimates) the experimentalλmax by 116 and 87 nm on
average. Hybrids perform significantly better for all dye
subsets (but CO). While CAM-B3LYP yields the smallest
MSE and MAE for AB and DA, PBE0 appears more efficient
for the other five families. On average, for the full set (118
transitions), we obtain a MAE of 22 nm only with PBE0,
whereas CAM-B3LYP produces almost twice this error.
Nevertheless, the PBE0 maximal deviations remain unac-
ceptably large:-74 and+90 nm. In the eV scale, the PBE0
MAE attains 0.14 eV and the RMS is 0.17 eV. As we have
considered a very extended and diverse set of dyes, this value
can be regarded as a new ‘expected accuracy’ for organic
dye design with TD-DFT. It is worth comparing this
performance with the 0.19 eV (37 nm) MAE obtained with
B3LYP/6-31G by Guillaumont and Nakamura for a smaller
set of dyes. The two other extended studies are due to Fabian
who reported B3LYP/6-31+G(d) MAE of 0.29 and 0.24 eV
for π f π* transitions in sulfur-free and sulfur-bearing
molecules, respectively.17,135The increased performance here
reported mainly originates in the use of (much) more
extended basis sets and the explicit consideration of solvent
effects, that are essential for a realistic simulation of the
experimental setups.

To check the consistency between experimental and
theoretical data, we have performed simple linear regressions
on the different dye sets. Results are summarized in Table
6. HF and PBE obviously provide much smaller correlation
coefficients than the hybrid approaches. Therefore, one can
definitely discard HF and PBE for dye design: they provide
not only the poorest absorption wavelength estimates but also
the less consistent auxochromic displacements. Applying a
linear correction to the PBE0 data is just useless, as the MAE

Table 6. Statistical Analysis for the AQ, AB, and IG
Seriesa

without fit
with linear
correction

family method MSE MAE RMS R2 MAE RMS

AQ HF 127 127 132 0.97 11 14
PBE -71 74 80 0.78 28 36
PBE0 12 19 27 0.96 12 15
LC-PBE 67 67 71 0.98 8 10
LC-ωPBE 85 85 89 0.99 8 9
CAM-B3LYP 53 33 58 0.98 8 10

AB HF 64 64 75 0.89 15 21
PBE -90 90 103 0.83 22 27
PBE0 -20 25 27 0.93 12 17
LC-PBE 33 33 43 0.95 10 14
LC-ωPBE 46 46 54 0.96 10 14
CAM-B3LYP 15 20 28 0.94 10 16

IG HF 170 170 174 0.89 19 26
PBE -96 96 116 0.71 34 42
PBE0 6 19 23 0.93 17 21
LC-PBE 70 70 72 0.97 10 13
LC-ωPBE 99 99 101 0.97 12 14
CAM-B3LYP 58 58 60 0.98 10 12

All HF 116 116 127 0.76 37 45
PBE -86 87 102 0.81 30 40
PBE0 -3 22 29 0.91 22 28
LC-PBE 52 52 58 0.94 18 23
LC-ωPBE 71 71 78 0.94 18 23
CAM-B3LYP 37 38 46 0.93 20 25

a All include the complete data from Tables 1-5. All values (but
R2) are given in nm.

Figure 4. Comparison between the LC-ωPBE and measured
λmax (nm) for the full set of transitions. The central line indicates
a perfect theory/experiment match.

130 J. Chem. Theory Comput., Vol. 4, No. 1, 2008 Jacquemin et al.



and RMS are almost unmodified. On the contrary, theR2

obtained with the range-separated functionals is at least 0.93,
confirming the interest of such approaches for classifying
molecules according to their transition energies. Therefore,
a linear correction improves the results of the three TD-LR-
DFT schemes, especially for the two LC functionals. For
instance, using

provides a MAE limited to 18 nm and a rms of 23 nm, that
are at least three times smaller than the uncorrected LC-
ωPBE data. Additionally, this MAE represents a 20%
improvement over the (raw or fitted) PBE0 error. The impact
of eq 3 is illustrated in Figure 5, and it is striking that the
maximal deviations are now limited to+57 and-41 nm,
both being smaller than the prior-to-fitting MAE. From Table
6, it is also striking that considering a single dye family and
performing a calibration is extremely efficient as a better
correlation coefficient and smaller average errors are sys-
tematically attained with range-separated functionals. There-
fore, if one is able to establish a calibration curve for a given
family of dye, the use of TD-LR-DFT should lead to the
sufficient accuracy for the design of a new dye structure.

IV. Conclusions
Using TD-DFT, we have assessed the efficiency of several
functionals for reproducing the experimental UV/visπ f
π* absorption wavelength of a set of 100+ organic dyes
belonging to the classes of major industrial interest: azoben-
zenes, anthraquinones, indigos, diarylethenes, ... It was found
that the computedλmax systematically obey a PBE> PBE0
> CAM-B3LYP > LC-PBE> LC-ωPBE> HF order. This
result can be rationalized by the total amount of exact
exchange in each functional. Overall, PBE0 provides the
smallest error with an average absolute deviation limited to
0.14 eV/22 nm. We state that this value should be regarded
as a referenceexpected PCM-TD-PBE0 accuracyfor low-
lying excited states of conjugated organic compounds. The
second best approach, CAM-B3LYP, suffers larger devia-
tions (0.26 eV/38 nm) but appears particularly well suited

for studying dyes with a very delocalized excited state. On
the contrary, HF and PBE give very poor estimates with
average errors of 0.97 eV/116 nm and 0.45 eV/87 nm,
respectively. If range-separated hybrids cannot beat PBE0
in terms of absoluteλmax, they provide more consistent
evaluations of the auxochromic shifts. Indeed, linear fittings
demonstrate that LR-functionals systematically give largeR2.
Consequently, using a calibration equation such as eq 3 can
considerably improve the accuracy of the LR computations.
This is especially true when the statistical treatment is
performed for a given dye family, for which average errors
close to 10 nm are indeed obtained, allowing an efficient
dye molecular design as it combines nearly quantitative
wavelength estimates to chemically sound classifications. For
the complete set of dyes, using scaled LR-DFT improves
the PBE0 MAE by about 20%.

Of course, only low-lyingπ* excited states of conjugated
organic molecules have been considered in the present
investigation. Care should be taken before applying eq 3 to
other types of excitations or structures. However, for Rydberg
states in small molecules it is clear that range-separated
hybrids are adequate,64,73,85whereas these functionals are as
accurate as global hybrids forn f π* transitions.88 Therefore,
this contribution paves the way toward accurate, yet afford-
able, estimations of the excited-state energies of medium and
large molecules. We are currently investigating inorganic
structures to test the transferability of this approach.
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Abstract: Configurational-bias Monte Carlo simulations in the isothermal-isobaric and Gibbs

ensembles using the transferable potentials for phase equilibria (TraPPE) force field were carried

out to compute the liquid densities, the Hildebrand solubility parameters, and the heats of

vaporization for a set of 32 organic molecules with different functional groups at a temperature

of 298.15 K. In addition, the heats of vaporization were determined at the normal boiling points

of these compounds. Comparison to experimental data demonstrates that the TraPPE force

field is significantly more accurate than predictions obtained from molecular dynamics simulations

with the Dreiding force field [Belmares et al. J. Comput. Chem. 2004, 25, 1814] and an equation

of state approach [Stefanis et al. Fluid Phase Equil. 2006, 240, 144]. For the TraPPE force

field, the mean unsigned percent errors for liquid density, the Hildebrand solubility parameter,

and the heat of vaporization at 298.15 K are 1.3, 3.3, and 4.5%, respectively.

1. Introduction
The solubility parameter,δH, proposed by Hildebrand based
on regular solution theory,1 is used frequently to predict
miscibility behavior for technological applications, such as
the blending of oil fractions to meet end product specifica-
tions,2 the prevention of asphaltene precipitation,3 the estima-
tion of the shelf life of polymers and drug formulations,4-7

the development of synthetic membranes,8 self-assembly and
gelation processes,9 and the formation of micelles10 and
nanocomposites.11 In addition, numerous group contribution
based techniques to predict and correlate polymer properties
such as the glass transition temperature and the permeability
of molecules through membranes depend on accurate esti-
mates of the solubility parameter.12 As the solubility param-
eter is obtained from the cohesive energy density,FU, it is a
measure of the interactions among the molecules in the
condensed phase.1 The overall interactions between mol-

ecules, as a first approximation, can be thought of as the
sum of dispersion and first-order electrostatic interactions.
Along similar lines, Hansen proposed a three-component
(dispersion, polar, and hydrogen bonding) solubility param-
eter model.13 However, while the cohesive energy density
can be measured for certain systems, it is not possible to
cleanly separate the individual contributions from dispersion,
polar, and hydrogen-bonding interactions.12,14

For low-molecular-weight solvents and monomer units,
direct experimental measurements of the heat of vaporization,
∆Hvap, and molar volume can be used to determine the
cohesive energy density and, hence, the Hildebrand solubility
parameter. On the other hand, for natural and synthetic
polymers and other high-molecular-weight compounds, for
which the determination of the heat of vaporization is
impractical due to extremely low vapor pressures at room
temperature and chemical degradation at elevated tempera-
tures, miscibility experiments are often carried out to deduce
FU andδH through comparison with compounds with known
δH.15 Other indirect methods to estimateδH include gas
chromatography16-19 and transport and mechanical properties,
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such as the viscosity7 and Young’s modulus.20 More recently,
computational tools ranging from quantitative structure-
property relationships (QSPR)12,21,22over equation of state
approaches23 to atomistic molecular dynamics (MD) and
Monte Carlo (MC) simulations24-30 have been applied for
the correlation and prediction ofδH. Although molecular
simulations are computationally much more expensive than
QSPR calculations, the former rely less on experimental data
and can provide molecular-level information in addition to
thermodynamic quantities.

Already in 1985, Theodorou and Suter24 used an atomistic
model to calculate the cohesive energy density and the
Hildebrand solubility parameter of atactic polypropylene.
Only 15 configurations were used to compute the averages,
and δH was found to be underestimated by approximately
15%. A few years later, Choi et al.25 used MD simulations
to calculate the three-dimensional solubility parameters of
alkyl phenol ethoxylates and reported good agreement with
estimates from group contribution models.31 These authors
also explored the effect of different schemes to select partial
atomic charges and found that the polar component of the
Hansen solubility parameter can differ significantly (3
hildebrands). Lago et al.26 used MC simulations in the Gibbs
ensemble to compute the solubility parameter for organic
solvents and diatomics. Recently, MD simulations were
carried out to investigate the binary blend compatibility of
poly(vinyl alcohol) and poly(methyl methacrylate)30 and
various surface properties and solubility parameters for
perfluorinated homopolymers and their random copolymers.32

Closely related to the aim of the present work, Belmares et
al.29 used the Dreiding force field31 along with charges
derived from molecular electrostatic potentials (ESP) or
Mulliken population analysis to calculate solubility param-
eters for a large set of common organic solvents and
monomer units. These authors found regression and correla-
tion coefficients of 1.01 and 0.73, respectively, when
comparing the predictedδH with experimental data, indicat-
ing a relatively large scatter in predicted values.

As the solubility parameter is related to vapor-liquid
equilibrium properties, the present work attempts to assess
whether modern force fields parametrized to phase equilib-
rium data can be used successfully for the prediction ofδH

not only at room temperature but also at elevated tempera-
tures. To this extent we employ the transferable potentials
for phase equilibria (TraPPE) force field that has been used
extensively to predict fluid phase equilibria,33-35 retention
in chromatography,36-39 octanol-water partitioning,40 ad-
sorptioninpharmaceuticalsolids,41andtransportproperties.42-45

A brief outline of this article is as follows: section 2 provides
a short definition of the solubility parameter and descriptions
of the simulation methodology and force field. In section 3,
the predictions ofδH, FU, ∆Hvap, and the specific densities
made using the TraPPE force field are compared with values
obtained from experiments, MD simulations with the Dre-
iding force field,29,31 and an equation of state approach.23

2. Methodology and Simulation Details
2.1. Background.The cohesive energy of a condensed phase
corresponds to the increase in internal energy when all the

intermolecular interactions are eliminated per mole of
condensed phase of a substance.12,21 At a particular temper-
ature,T, and the corresponding saturation pressure,psat, the
cohesive energy density,FU, is obtained by dividing the
cohesive energy by the molar volume of the condensed phase

whereUcoh andVliq are the molar cohesive energy and the
molar volume of the liquid phase, respectively. For low-
molecular-weight compounds, the cohesive energy is ob-
tained from the molar heat of vaporization, using the
following equation

where∆Hvap and ∆V are the enthalpy of vaporization and
the difference in vapor and liquid molar volumes, respec-
tively. If the vapor pressure of a substance is negligible and
if there is no aggregation of molecules in the vapor phase,
then the vapor phase behaves like ideal gas. In such cases,
eq 2 can be simplified as

whereRandT are the universal gas constant and the absolute
temperature, respectively. The Hildebrand solubility param-
eter,δH, is calculated directly fromFU using the equation

As FU and the pressure have the same dimension, its SI unit
and that for δH are Pascal (Pa) and Pa1/2, respectively.
Traditionally, the solubility parameter has been expressed
in (cal/cm3)1/2, called a “hildebrand’’. In this work, the
“hildebrand’’ is used as the unit for the solubility parameter.

2.2. Simulation Details.Coupled-decoupled configura-
tional-bias Monte Carlo (CBMC) simulations46-48 in the
constant-volume Gibbs ensemble (GE)49-51 and the isobaric-
isothermal (NPT) ensemble52 were carried out to compute
the heat of vaporization and cohesive energy density,
respectively. Table 1 provides a list of the 32 compounds
studied in this work and of the version of the TraPPE force
field and the system size used for the simulation of a specific
compound. It should be noted that Belmares et al.29 inves-
tigated a larger set of 64 compounds, but TraPPE parameters
are not yet available for the remainder.

For the GEMC simulations, five different kinds of Monte
Carlo moves were employed to sample the configurational
part of the phase space: center-of-mass translations, rotations
around the center of mass, conformational changes using
CBMC,46-48 CBMC particle swaps between the two boxes,53,54

and volume exchanges between the boxes. For the special
case of carboxylic acids that strongly associate in the vapor
phase, aggregation-volume-bias MC moves55,56 were also
employed to sample the cluster distribution in the vapor
phase. The maximum displacements for translational, rota-

FU(T,Psat) )
Ucoh(T,Psat)

Vliq(T,Psat)
(1)

Ucoh(T, Psat) ) ∆Hvap(T) - Psat∆V (2)

Ucoh(T, Psat) ) ∆Hvap - RT (3)

δH ) (FU)1/2 (4)
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tional, and volume moves were adjusted to achieve 50%
acceptance rates. To increase the sampling efficiency,
different maximum displacements were used for translations
and rotations in the vapor and liquid boxes. The probabilities
for volume and swap moves were adjusted to give at least
one volume move accepted every 10 MC cycles and one
swap move accepted every 10-50 MC cycles.

Simulations were started by placing the molecules on a
simple-cubic lattice, followed by 1000 MC cycles (where
one cycle consists ofN, the number of molecules, randomly
selected trial attempts) at high temperature to melt the initial
crystalline lattice. Five thousand MC cycles at a temperature
close to the critical temperature were used to cool the system,
followed by another 5000 MC cycles to reach the desired
temperature. During these melting and cooling stages only
translational, rotational, and conformational moves were
used. Thereafter, the system was equilibrated at the desired
temperature for at least 50 000 MC cycles using all five move
types. During this period, the volume of the vapor box was
adjusted to allow for an average of 20-40 molecules in the
vapor phase. The production periods consisted of 50 000 MC
cycles. The statistical uncertainties were determined by
dividing the production run into 5 blocks.

The enthalpy of vaporization is computed on-the-fly in
the GEMC simulation (after every MC move) using the
formula

whereUvap, Uliq, Psat, and∆V are the instantaneous values
of the molar internal energy of the vapor and liquid phases,
the saturated vapor pressure, and the difference in the molar
volume of the liquid and the vapor phase, respectively.

The isobaric-isothermal MC simulations employed trans-
lational, rotational, and conformational moves of single
molecules and volume exchanges with an external pressure
bath Pext ) 1 atm. The use of the Ewald summation to
compute the electrostatic interactions (see below) makes it
computationally expensive to separate the inter- and intramo-
lecular components of the first-order electrostatic energy.
Hence, an isolated molecule was simulated in a separate box
to compute the average intramolecular energy. The solubility
parameter at 1 atm was computed on-the-fly using the
following equation

whereUiso, Uliq, andVliq are the instantaneous values of the
intramolecular energy (per mole) of the isolated molecule,
the molar internal energy of the liquid phase, and the molar
volume of the liquid phase, respectively.

For both GEMC and isobaric-isothermal simulations, a
site-site based spherical potential cutoff atrcut ) 14 Å was
used for the Lennard-Jones (LJ) interactions and the real
space part of the Ewald summation. Analytical tail correc-
tions57 were used to account for the LJ potential beyondrcut.
The Ewald summation51,57 with tin foil boundary condition
was used to calculate the Coulombic interactions. The Ewald
sum convergence parameter,κ, was set to 3.2/rcut, and the
maximum number of reciprocal space vectors,Kmax, was set
to 10.

In addition to the MC simulations for the TraPPE force
field, we also carried out MD simulations following the
protocol suggested by Belmares et al.29 to compute the
solubility parameters for the Dreiding force field with
Mulliken or ESP partial charges at the normal boiling point.
Complete details for this simulation protocol can be found
in the original reference.

2.3. Force Field. The TraPPE force field58 has been
parametrized for a large set of organic compounds including
linear and branched alkanes,48,59,60 alkenes,61 alcohols,62

ethers,63 aldehydes,63 ketones,63 acids,64 esters,65 amines,66

amides,66 nitroalkanes,66 sulfides,67 disulfides,67 thiols,67 and
aromatic heterocycles.68 The TraPPE force field derives its
strength from the simplicity of the potential functions used
and the transferability of interaction sites that allows for
building of new compounds not included in the parametriza-
tion set. As for many other force fields, the development of
the TraPPE force field involves fitting of the parameters for
intermolecular interactions to experimental data. Whereas the
development of prior force fields, such as the very successful
optimized potentials for liquid simulations (OPLS) force field

Table 1. List of the 32 Compounds Studied, the Version
of the TraPPE Force Field, and the System Size Used for
the Monte Carlo Simulations

molecule force field system size

methanol TraPPE-UA 450
ethanol TraPPE-UA 400
1-propanol TraPPE-UA 300
1-butanol TraPPE-UA 250
butane-1,3-diol TraPPE-UA 250
propane-1,2,3-triol (glycerol) TraPPE-UA 250
1-pentanol TraPPE-UA 250
2-ethylbutan-1-ol TraPPE-UA 250
2-ethylhexan-1-ol TraPPE-UA 200
diethyl ether TraPPE-UA 250
n-hexane TraPPE-EH 250
2,2-dimethylpropane TraPPE-EH 250
acetonitrile TraPPE-EH 400
propionitrile TraPPE-EH 300
propanedinitrile (malononitrile) TraPPE-EH 300
acetone TraPPE-UA 400
butan-2-one TraPPE-UA 250
4-methyl-2-pentanone TraPPE-UA 250
2,6-dimethyl-4-heptanone TraPPE-UA 250
N,N-diethylamine TraPPE-EH 250
N,N-dipropylamine TraPPE-EH 250
benzene TraPPE-EH 250
toluene TraPPE-UA 250
ethylbenzene TraPPE-UA 250
chlorobenzene TraPPE-EH 250
o-dichlorobenzene TraPPE-EA 250
ethylchloride TraPPE-UA 400
1-chlorobutane TraPPE-UA 400
dichlorodifluoromethane TraPPE-EH 400
carbontetrachloride TraPPE-EH 400
ethanoic acid (acetic acid) TraPPE-UA 400
propionic acid TraPPE-UA 300

∆Hvap ) 〈Uvap - Uliq + Psat∆V〉Gibbs (5)

δH ) 〈(Uiso - Uliq

Vliq
)1/2〉

NPT
(6)
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pioneered by Jorgensen and co-workers,69 involves param-
etrization of the nonbonded parameters against experimental
data (specific density, heat of vaporization, and heat capacity)
of only the liquid phase at only one state point, the
parametrization of the TraPPE force field involves phase
equilibrium data at multiple state points. The use of vapor-
liquid equilibrium properties became possible only with the
emergence in the early 1990s of configurational-bias Monte
Carlo simulations in the Gibbs ensemble53,54and quickly lead
to a demonstration that force fields fitted at only one liquid-
phase state point are often not as accurate over a more
extensive region of the vapor-liquid coexistence curve.70

This realization provided the incentive to fit nonbonded force
field parameters against vapor-liquid coexistence curves.71,72

Shortly after the first of these new force fields became
available, it was also shown that they yield surprisingly
accurate predictions of transport properties that are quite
different from the equilibrium properties used for the
parametrization.42,43,73,74

The development of the TraPPE force field involves a
group-by-group parametrization philosophy that attempts to
determine the parameters of a single group by fitting to the
saturated liquid density, critical temperature, and saturated
vapor pressure of a suitable test compound. The parameters
for this group are then transferred when fitting the parameters
for the next group, e.g., united-atom methyl group parameters
fitted to the vapor-liquid equilibrium properties of ethane
were used when fitting the parameters for the methylene
group to the properties ofn-pentane.59 This group-by-group
parametriztion philosophy yields in most cases unique
parameters because only two Lennard-Jones parameters are
fitted against a larger number of vapor-liquid equilibrium
properties. However, single-component vapor-liquid equi-
librium properties alone might not be sufficient for small
polar molecules, e.g., carbon dioxide, ammonia, or benzene.
In these cases, the parametrization either involved additional
simulations for binary mixtures with alkanes75 or for solid-
fluid equilibrium properties.76,77

For alkanes, nitriles, and arenes, the TraPPE force field
provides a choice of using either the united-atom (UA) or
the explicit-hydrogen (EH) representation of CHx groups. The
UA version of the force field is simple and results in savings
of computer time, while the EH hydrogen version provides
more accurate vapor densities, vapor pressures, and heats of
vaporization over a wide range of temperatures and pressures
at a higher computational cost. In this work, we always use
the EH version when available.

The total interaction energy for the TraPPE force field
consists of bonded and nonbonded parts. The nonbonded
interactions are represented by Lennard-Jones (LJ) and
Coulomb potentials, given by

whererij, σij, εij, qi, qj, andε0 are the distance between two
interaction sites, LJ size and LJ well depth, partial atomic
charge on the interaction sitesi and j, and the permittivity
of the vacuum, respectively. The Lorentz-Berthelot com-

bining rules78 are used to determine LJ parameters for unlike
interactions. In the TraPPE force field, molecules are treated
as semiflexible chains: All bond lengths are kept rigid, bond
bending angles are controlled by harmonic potentials, and
dihedral motions are governed by cosine series potentials.

3. Results and Discussion
Figure 1 shows a comparison of the Hildebrand solubility
parameters (numerical values are listed in Table 2) for the
set of 32 compounds obtained from MC simulations using
the TraPPE force field, MD simulations using the Dreiding
force field with ESP (D/ESP) or Mulliken (D/MUL) partial
charges,29 the equation of state (EOS) approach,23 and the
experimental data.29 This set includes a wide range of
functional groups for which the TraPPE force field is
available, namely alkanes, alcohols, ketones, ethers, nitriles,
amines, benzene and benzene derivatives, alkylchlorides,
fluoroalkanes, and carboxylic acids. The mean unsigned
percent error (MUPE) inδH predicted using the TraPPE force
field is 3.3%, whereas the errors for the D/ESP, D/MUL,
and EOS are 9.2, 11.6, and 4.8%, respectively, i.e., the
TraPPE force field performs significantly better.

A similar trend is observed from the correlation plot (see
Figure 1). Linear least-squares fits yieldy ) -0.453+ 1.05x
(correlation coefficient,R ) 0.9855),y ) 3.104+ 0.692x
(R ) 0.897), andy ) 3.113+ 0.713x (R ) 0.837) for the
TraPPE, D/ESP, and D/MUL force fields, respectively. The
slope near unity, small intercept, and highR value obtained
for the TraPPE force field shows that both absolute and
relativeδH values are predicted with excellent accuracy. In
contrast, the D/ESP and D/MUL force fields yield slopes
that are significantly smaller than unity and large positive
intercepts, i.e., the relative accuracy is somewhat lacking.
Nevertheless, the D/ESP force field performs somewhat
better than D/MUL.

u(rij) ) 4εij[(σij

rij
)12

- (σij

rij
)6] +

qiqj

4πε0r ij
(7)

Figure 1. Comparison of the predicted solubility parameters
at T ) 298.15 K with experimental data.29 The red, green,
and black circles represent the solubility parameters computed
with the TraPPE force field, the Dreiding force field with ESP
charges, and the Dreiding force field with Mulliken charges.
The correspondingly colored lines show the linear least-
squares fits, and the blue line is the ideal correlation (y ) x).
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The accuracy of the EOS approach forδH predictions is
close to that for the TraPPE force field. It should be noted
that the EOS approach23 uses characteristic parameters for
each of the molecules, whereas the TraPPE force field has
been fitted to specific functional groups, providing transfer-
ability of parameters. In the set of 32 molecules, EOS values
were available only for 14 molecules, of which 6 were
alcohols. When considering only the alcohols for which EOS
values are available, the MUPEs for the TraPPE, D/ESP,
D/MUL, and EOS are 1.9, 9.6, 10.1, and 1.7, respectively,
i.e., the TraPPE force field and the EOS approach perform
better for the alcohols than for the entire set.

None of the four approaches is able to predictδH within
5% of the average experimental values for the carboxylic
acids. For the acids, the MUPEs for TraPPE, D/ESP,
D/MUL, and EOS are 13, 20, 16, and 22%, respectively.
While the EOS model performed extremely well for the
alcohols, it is the worst for the acids. The TraPPE force field
has the smallest MUPE. It should be noted that experimental
values for acetic acid and propionic acid range from 10.1 to
13.0 and 8.1 to 12.7, respectively.29 The large scatter in the
experimental values is most likely caused by an inability to
account for the extent of dimerization of smaller acids in

the vapor phase. The TraPPE and D/MUL force fields predict
δH for both acids within the experimental range. It is likely
that these discrepancies will diminish for higher-molecular-
weight carboxylic acids because their vapor pressures are
sufficiently low that dimerization in the vapor phase is less
prevalent.64

The numerical data listed in Table 3 and the correlation
plots presented in Figure 2 clearly show that the force fields
perform significantly better for predictions of the liquid
density than of the solubility parameter. The MUPEs for the
liquid densities obtained with the TraPPE, D/ESP, and
D/MUL force fields are 1.3, 5.1, and 5.1, respectively, and
the linear fits yieldy ) 0.049+ 0.934x (R ) 0.997),y )
-0.063+ 1.060x (R ) 0.957), andy ) -0.091+ 1.096x
(R ) 0.958), respectively. In this case, all three force fields
give slopes near unity and small absolute values for the
intercept. However, there is substantially more scatter in the
simulation data for the Dreiding force field as is evident from
the lower correlation coefficients. For the prediction of liquid
densities, there is no significant difference in the accuracy
between D/ESP and D/MUL.

As the solubility parameters for most compounds are not
available at higher temperatures, heats of vaporization at the

Table 2. Numerical Values of the Hildebrand Solubility Parameters (in Units of (cal/cm3)1/2) and Their Standard Deviations
(SD)a

molecule exptb SD TraPPE SD D/ESP29 SD D/MUL29 SD EOS23

methanol 14.5 0.08 14.9 0.05 12.6 0.71 12.9 0.55 14.6
ethanol 12.8 0.12 12.9 0.02 11.2 0.51 11.8 0.64 12.8
1-propanol 11.8 0.57 12.0 0.04 10.9 0.60 10.3 0.43 11.8
1-butanol 11.7 0.84 11.4 0.02 10.4 0.46 9.9 0.56 11.2
butane-1,3-diol79 13.8 6.16 14.1 0.09 12.8 0.52 12.7 0.33
propane-1,2,3-triol 16.5 3.63 16.7 0.44 15.6 0.32 16.5 0.82 16.8
1-pentanol 11.0 0.99 10.9 0.02 10.1 0.48 9.5 0.18 10.7
2-ethylbutan-1-ol 10.8 0.84 10.4 0.05 9.5 0.35 9.2 0.46
2-ethylhexan-1-ol 9.8 0.46 9.9 0.02 8.8 0.45 9.0 0.54
diethyl ether 7.5 0.16 7.3 0.03 7.5 0.57 8.9 0.40 7.7
n-hexane 7.3 0.02 7.4 0.19 7.4 0.69 7.5 0.47 7.1
2,2-dimethylpropane 6.3 6.3 0.09 7.2 0.68 7.3 0.88
acetonitrile 11.9 0.08 12.0 0.01 11.6 0.49 12.5 0.55
propionitrile 10.7 0.07 10.5 0.01 10.2 0.46 11.0 0.33
propanedinitrile 15.1 15.9 0.07 12.9 0.42 14.7 0.31
acetone 9.8 0.16 9.1 0.02 10.2 0.59 10.8 0.50 9.8
butan-2-one 9.3 0.06 8.8 0.02 9.4 0.37 9.9 0.27
4-methyl-2-pentanone 8.4 0.12 8.3 0.01 9.1 0.38 9.7 0.30
2,6-dimethyl-4-heptanone 8.1 0.25 7.9 0.03 8.6 0.27 8.7 0.44
N,N-diethylamine 8.0 0.03 8.2 0.02 8.7 0.58 7.6 0.33 8.2
N,N-dipropylamine 7.8 0.10 7.9 0.03 8.4 0.20 7.4 0.50
benzene 9.2 0.04 9.5 0.02 9.8 0.51 10.3 0.47 8.9
toluene 8.9 0.08 8.7 0.02 9.2 0.66 9.6 0.20 8.7
ethylbenzene 8.8 0.04 9.2 0.00 9.3 0.41 9.5 0.26
chlorobenzene 9.6 0.07 9.7 0.02 10.5 0.50 10.3 0.39
o-dichlorobenzene 10.0 0.03 10.1 0.03 10.3 0.25 10.6 0.20
ethylchloride 8.8 0.49 8.3 0.01 8.2 0.70 8.2 0.54
1-chlorobutane 8.4 8.1 0.02 8.8 0.32 8.2 0.20
dichlorodifluoromethane 5.8 0.44 6.1 0.02 8.5 0.40 10.9 0.36
carbontetrachloride 8.6 0.05 8.5 0.02 9.3 0.29 9.6 0.45
ethanoic acid 11.1 1.41 12.7 0.07 13.5 0.62 12.9 0.66 13.5
propionic acid 10.2 2.20 11.3 0.09 12.0 0.49 11.7 0.25 12.4
MUPE 3.3 9.2 11.6 4.8
a At T ) 298.15 K and P ) 1 atm. b Corrected average values taken from ref 29.
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normal boiling point were used to test the efficacy of the
force fields at higher temperatures. Table 4 lists the numerical

data for∆Hvap at 298.15 K and at the normal boiling point
for each of the 32 molecules. It should be noted here that
additional MD simulations were carried in this work to obtain
the solubility parameters for D/ESP and D/MUL at the
normal boiling point using the protocol of Belmares et al.29

The values forδH were then converted to∆Hvap using eqs
1, 3, and 4. The MUPEs for∆Hvap predicted by TraPPE,
D/ESP, and D/MUL at 298.15 K (and atTb) are 4.5 (5.1),
11.2 (12.1), and 17.3 (19.8), respectively. Although the
MUPEs give the impression that the accuracy of all three
force fields does not deteriorate substantially when the
temperature is increased, the correlation plots shown in
Figure 3 indicate that this is not the case. The resulting least-
squares fits for TraPPE, D/ESP, and D/MUL at 298.15 K
arey ) 0.106+ 0.965x (R ) 0.982),y ) 2.198+ 0.777x
(R ) 0.934), andy ) 2.885 + 0.733x (R ) 0.880),
respectively, and at the normal boiling pointy ) 0.019+
1.018x (R ) 0.941),y ) 2.445+ 0.767x (R ) 0.808), and
y ) 4.745+ 0.489x (R ) 0.556), respectively. The TraPPE
force field predicts the heats of vaporization at 298.15 K
and atTb quite well as is evident from the slopes and the
intercepts, and, as shown recently, the TraPPE force field
also predicts the pressure dependence of the solubility
parameter correctly.82 The correlations for the D/ESP are of

Table 3. Numerical Values of the Specific Densities (in Units of g/cm3) and Their Standard Deviations (SD)a

molecule expt80 TraPPE SD D/ESP29 D/MUL29

methanol 0.791 0.781 0.003 0.69 0.74
ethanol 0.794 0.780 0.002 0.72 0.76
1-propanol 0.804 0.797 0.002 0.71 0.72
1-butanol 0.810 0.803 0.001 0.75 0.75
butane-1,3-diol 1.005 1.002 0.002 0.91 0.94
propane-1,2,3-triol 1.261 1.174 0.003 1.09 1.14
1-pentanol 0.811 0.809 0.001 0.76 0.75
2-ethylbutan-1-ol 0.830 0.827 0.001 0.78 0.77
2-ethylhexan-1-ol 0.833 0.831 0.001 0.76 0.78
diethyl ether 0.706 0.706 0.001 0.69 0.75
n-hexane 0.659 0.653 0.001 0.65 0.65
2,2-dimethylpropane 0.580 0.608 0.004 0.64 0.63
acetonitrile 0.786 0.777 0.001 0.82 0.82
propionitrile 0.772 0.772 0.001 0.76 0.80
propanedinitrile 1.049 1.064 0.005 1.03 1.05
acetone 0.791 0.777 0.000 0.82 0.82
butan-2-one 0.805 0.789 0.001 0.80 0.81
4-methyl-2-pentanone 0.802 0.798 0.002 0.83 0.83
2,6-dimethyl-4-heptanone 0.808 0.806 0.002 0.82 0.81
N,N-diethylamine 0.707 0.702 0.001 0.71 0.65
N,N-dipropylamine 0.738 0.731 0.002 0.70 0.67
benzene 0.874 0.876 0.001 0.93 0.92
toluene 0.865 0.860 0.001 0.86 0.89
ethylbenzene 0.867 0.862 0.002 0.88 0.88
chlorobenzene 1.107 1.087 0.002 1.13 1.10
o-dichlorobenzene 1.306 1.278 0.002 1.31 1.30
ethylchloride 0.890 0.884 0.001 0.89 0.88
1-chlorobutane 0.886 0.872 0.001 0.87 0.86
dichlorodifluoromethane 1.310 1.296 0.002 1.56 1.62
carbontetrachloride 1.594 1.528 0.003 1.63 1.67
ethanoic acid 1.049 1.031 0.003 1.04 1.03
propionic acid 0.993 0.984 0.002 0.94 0.96
MUPE 1.3 5.1 5.1

a At T ) 298.15 K and P ) 1 atm.

Figure 2. Comparison of the predicted specific densities at
T ) 298.15 K with experimental data.80 The red, green, and
black circles represent the specific densities computed with
the TraPPE force field, the Dreiding force field with ESP
charges, and the Dreiding force field with Mulliken charges.
The correspondingly colored lines show the linear least-
squares fits, and the blue line is the ideal correlation (y ) x).
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Figure 3. Comparison of the predicted heats of vaporization at T ) 298.15 K (a) and the (experimental) normal boiling point (b)
with experimental data.81 The red, green, and black circles represent the specific densities computed with the TraPPE force
field, the Dreiding force field with ESP charges, and the Dreiding force field with Mulliken charges. The correspondingly colored
lines show the linear least-squares fits, and the blue line is the ideal correlation (y ) x).

Table 4. Numerical Values of the Heats of Vaporization (in Units of kcal/mol), at T ) 298.15 K and at the Experimental
Normal Boiling Point

T ) 298.15 K Tb

molecule expt81 TraPPE D/ESPa D/MULa expt81 TraPPE D/ESPa D/MULa

methanol 9.0 9.4 8.0 7.8 8.4 8.7 7.4 7.4
ethanol 10.0 10.3 8.6 9.0 9.2 9.3 8.3 7.7
1-propanol 11.3 11.4 10.6 9.4 9.9 9.8 10.0 7.9
1-butanol 12.2 12.3 11.3 10.3 10.3 10.3 10.4 9.0
butane-1,3-diol 17.7 18.2 16.8 16.0 13.0 14.2 13.2 12.8
propane-1,2,3-triol 21.9 21.4 21.2 22.6 n/a 15.8 16.3 13.0
1-pentanol 13.4 13.4 12.4 11.2 10.6 10.5 10.4 9.6
2-ethylbutan-1-ol 14.3 14.0 12.4 11.7 n/a 10.5 10.1 10.1
2-ethylhexan-1-ol n/a 15.6 13.7 14.0 n/a 10.9 10.7 9.6
diethyl ether 6.5 6.1 6.6 8.5 6.3 6.0 6.3 9.1
n-hexane 7.6 7.6 7.8 8.0 6.9 7.0 6.9 6.9
2,2-dimethylpropane 5.3 5.5 6.4 6.7 5.4 5.6 6.4 6.4
acetonitrile 8.0 8.0 7.3 8.4 7.1 7.3 7.2 8.0
propionitrile 8.6 8.3 8.1 9.0 7.6 7.4 7.3 8.7
propanedinitrile 16.3 15.9 11.3 14.3 n/a 13.2 9.2 13.4
acetone 7.5 6.8 8.0 8.8 7.0 6.4 7.5 8.0
butan-2-one 8.3 7.7 8.6 9.3 7.5 7.0 7.8 8.9
4-methyl-2-pentanone 9.7 9.3 10.6 11.9 8.2 8.0 9.1 11.1
2,6-dimethyl-4-heptanone 12.2 11.7 13.3 13.8 n/a 9.4 10.2 11.4
N,N-diethylamine 7.5 7.7 8.3 7.1 6.9 7.1 7.4 6.6
N,N-dipropylamine 9.6 9.2 10.8 8.9 8.0 8.0 10.3 8.0
benzene 8.1 8.5 8.7 9.7 7.3 7.7 8.5 9.2
toluene 9.1 8.6 9.7 10.1 7.9 7.6 8.8 9.3
ethylbenzene 10.1 10.7 11.1 11.4 8.5 9.3 9.3 9.7
chlorobenzene 9.8 10.3 11.6 11.5 8.4 8.9 9.8 10.4
o-dichlorobenzene n/a 12.4 12.5 13.2 n/a 10.2 11.6 12.1
ethylchloride n/a 5.7 5.5 5.5 5.9 5.8 6.1 5.5
1-chlorobutane 8.0 7.7 8.8 7.8 7.3 7.0 7.9 7.1
dichlorodifluoromethane 4.1 4.0 6.2 9.4 4.9 4.8 6.5 8.7
carbontetrachloride 7.8 7.8 8.8 9.2 7.1 7.2 8.2 8.5
ethanoic acid 12.3 9.8 11.1 10.3 5.7 8.4 10.1 9.7
propionic acid 13.1 10.6 11.9 11.2 n/a 8.7 9.9 9.7
MUPE 4.5 11.2 17.3 5.1 12.1 19.8
a Computed from solubility parameters using eqs 1, 3, and 4.
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similar quality at both temperatures, the D/MUL force field
performs significantly worse at elevated temperatures. It
should be noted here that the deviations for the two acids
are quite large. In particular, atTb the TraPPE, D/ESP, and
D/MUL force fields overestimate∆Hvap by 50, 80, and 70%,
respectively. Maybe, this points to a problem with the
experimental data that show a decrease in∆Hvap by an
unusually large factor of 2 upon the increase in temperature.

4. Conclusions
The Hildebrand solubility parameters, liquid-phase densities,
and heats of vaporization at the standard temperature, and
the heats of vaporization at the normal boiling point were
computed for a set of 32 common organic solvents and
monomer units. The overall performance of the TraPPE force
field is very satisfactory and significantly better compared
to the Dreiding force field with either ESP or Mulliken partial
charges. The main advantage of the Dreiding force field is
that it can be applied to simulate a larger number of
functional groups than are currently available for the TraPPE
force field. The EOS approach is nearly as accurate as the
TraPPE force field. The main drawback of the EOS approach
is the lack of transferability due to the use of molecule-
specific parameters. Based on the results presented here, we
believe that molecular simulation offers a promising alterna-
tive to experimental measurements for the determination of
solubility parameters for organic compounds.
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Abstract: Despite widespread zirconium use ranging from nuclear technology to antiperspirants,

important aspects of its solvation chemistry, such as the nature of small zirconium(IV) hydroxy

cluster ions in aqueous solution, are not known due to the complexity of the zirconium aqueous

chemistry. Using a combination of Car-Parrinello molecular dynamics simulations and

conventional quantum mechanical calculations, we have determined the structural characteristics

and analyzed the aqueous solution dynamics of the two smallest zirconium(IV) cluster species

possible, i.e., the dimer and trimer. Our study points to and provides detailed geometrical

information for a stable structural motif for building zirconium polymers, the Zr(OH)2Zr bridging

unit with 7-8 coordinated Zr ions, which, however, cannot be used to construct a stable structure

for the trimer. We find that a stacked trimer, not featuring this motif, is a possible structure,

though not a very stable one, shedding new light on this species, and its possible importance

in the aqueous chemistry of Zr4+ ion.

I. Introduction
The aqueous chemistry of metal cations is of great interest
due to their important roles in chemistry, geochemistry, and
biochemistry. The structures, charges, and stabilities of
aqueous metal cations and their polynuclear hydrolysis
products are crucial for understanding and controlling
processes such as their adsorption onto soil/mineral particles;
coagulation/precipitation; chemical separations; and interac-
tions with living organisms. Understanding transition and
inner transition metal hydrolysis presents a special experi-
mental challenge, due to the complexity and variability of
the species formed by these ions in water as well as radio-
activity in some cases. Despite decades of research, triggered
by applications ranging from drug design to nuclear technol-
ogy, many physicochemical characteristics of these highly
charged ions and their hydrolysis products remain unknown.

The principal experimental problems associated with
studying the hydrolysis of highly charged cations are related
to the variability and complexity of solution composition and
the simultaneous presence of many diverse polynuclear hy-
drolysis products. Using computational methods, one can
isolate a specific chemical species or a combination of spe-
cies, control the system conditions, and make observations
and analyses of processes at the atomic level.

We tackle here the characteristics of polynuclear species
formed by solvation of a IVB group metal cation, Zr4+. Our
choice of the transition metal to study stems from the
important uses of zirconium and the fact that its chemistry
is representative of the other IVB group elements as well as
our lack of understanding of certain aspects of Zr, Ti, and
Hf (group IVB) chemical behavior.1 For example, Zr4+, Hf4+,
and Ti4+ polynuclear clusters have been recently found to
bind to an Fe3+-binding protein, a member of the transferrin
superfamily,2 which plays a role in biomineralization.3,4 In
addition, Zr4+ ion is an essential ingredient of all antiper-
spirants and thus interacts with human biochemistry through
widespread and everyday antiperspirant use, although the
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nature and the biochemical effect of the specific polynuclear
species formed on our skin as a result of Zr4+ polymerization
are not known.5

Most importantly, zirconium metal is a crucial part of
zircaloy, the material used in the nuclear fuel rod cladding.
Despite its exceptional corrosion resistance, there is an
emerging need to model zirconium corrosion due to the long-
term possibility that corrosion may lead to leaks of radioac-
tive material, consequent environmental contamination, and
ultimately exposure of individuals to radioactivity.6 The rate
of migration of heavy metal ions out of nuclear waste
depositories, mining tailings, and coal mines is similarly
dependent on the particular hydrolytic species that are
present. Common to all the above problems is the need to
know exactly what species form in aqueous solutions of these
ions under the conditions present and what their physico-
chemical features are.

In solution, zirconium exists exclusively in a+4 state and
is believed to attain coordination numbers of 7 and 8, higher
than typical for 3d-transition elements.7 As opposed to many
other transition metals, due to the high charge/radius ratio,
Zr4+ ion as well as the other two ions of the IVB group (Hf4+

and Ti4+) strongly hydrolyzes in water, leading to the
formation of polynuclear species with oxygen containing
bridges.7 With few exceptions, neither the structure nor the
exact composition of the hydrolyzed mononuclear and
polynuclear species have been established. The extent of
polymerization depends on many experimental parameters
(e.g., aging, temperature, pH, and concentration), resulting
in species with very different compositions, often difficult
or impossible to distinguish experimentally.7,8

Specifically, we present herein our Car-Parrinello mo-
lecular dynamics (CPMD)9 study of the small Zr4+ poly-
nuclear cluster species and their behavior in an aqueous
environment. The method is uniquely suited to the problem
of identifying and analyzing relatively small structures and
their behavior in aqueous solutions. This is due to the fact
that it does not employ empirically parametrized forces to
govern atomic motion but rather determines them “on the
fly”, along with the molecular dynamics (MD) simulation,
from the electronic structure calculations. Thus, CPMD can
yield conclusions about interactions between particles in
solution as well as properly model important solution
processes involving bond breaking and/or formation, such
as water deprotonation, and polynuclear species formation
and disintegration. The effectiveness of CPMD in ion
solvation studies has been demonstrated for a number of
cations, including Cu2+,10 Na+,11 Ca2+,12,13 Mg2+,14 Fe3+,15

Y3+,16 K+,17 Al 3+,18 Li +,19 and Be2+.20 CPMD has also been
successfully used for identification of unknown structures21

(including hydrolysis products of ions)22,23and studies of their
characteristics.24

Herein we focus on the two smallest polynuclear species
zirconium is thought to form upon dissolution in aqueous
media: the dimer and the trimer. Despite the importance of
zirconium, only the structure of the tetrameric species (Zr4-
(OH)8(H2O)16Cl8) is known with certainty, from early X-
ray25,26and other experiments.27 X-ray scattering studies have
shown that this species is the dominant form in solutions.26,28

Spectrophotometric,29 ultracentrifugation,30 and light-scat-
tering31 studies suggest a possible presence of a trimer, Zr3-
(OH)48+, or Zr3(OH)57+. However, several recent publications
find evidence for only the dimer (Zr2(OH)62+ and Zr2(OH)7+)
and tetramer.1,32 We have determined and characterized the
gas-phase and solution structures of the dimer and trimer
species using the computational methods described herein
and analyzed their stability and chemical behavior in aqueous
solution.

II. Methodology
Computational studies of the zirconium system were per-
formed using ab initio (Car-Parrinello) molecular dynamics
(CPMD).9 We employed a Goedecker-type pseudopotential
for zirconium33 and nonlocal norm-conserving soft pseudo-
potentials of Troullier-Martins type34 for oxygen and hydro-
gen. Angular momentum components up to lmax ) 2 have
been included for Zr and lmax ) 1 for O. The BLYP exchange
correlation functional was employed,35,36along with a plane
wave basis with a 70 Ry cutoff. All simulations were
performed in a periodically repeating cubic box, with the
size varying depending on the specific Zr system (see below),
with periodic boundary conditions.

Initial structures of the two polymer classes were con-
structed using a square antiprism as the building unit (Figure
1), based on the expected 7-8 coordination of Zr4+ ion, the
X-ray structure of the tetramer, and our CPMD simulations
of the Zr4+ ion in solution.37 In general, minimum energy
geometries of gas-phase structures were obtained by an initial
relaxation at 300 K (in some cases 100 and 50 K were used,
see section III) for 4-5 ps, followed by simulated annealing
and geometry optimization. Simulated annealing runs used
scaling factors of 0.9998 and 0.9999 for ionic velocities
(unless otherwise noted). The gas-phase simulation cell edge

Figure 1. Square antiprism shape used as the building unit
for the initial structure design of the dimer and trimer species
(see also Figures 2, 3, 6, and 7). Two models (and two views)
used further in the text are shown: (a) Ball and stick model -
lines represent bonds between Zr4+ ion (yellow) and the
bridging oxygen atoms (red) and H2O moieties. (b) Planes
cornered by Zr4+ ion (yellow) and oxygen atoms (red)
represented in solid or translucent colors (green) to facilitate
viewing of the structure in space, with perspective.
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was 12.5 Å for the dimers, 14.0 Å for the compact trimers,
and 18.0 Å for the linear trimers. In all calculations, classical
equations of motion have been integrated with a velocity
Verlet algorithm with a time step of 0.1207 fs and a fictitious
mass for the electronic degrees of freedom ofµ ) 500 au.

After optimization by the CPMD code, structures of the
dimer and trimer species were refined by BLYP38,39 and
B3LYP optimizations,39,40 using the LanL2DZ basis set.41

These optimizations were carried out by Gaussian03.42

Harmonic frequencies for the optimized geometries of these
species have been calculated to ensure that they correspond
to the local minima. The size of the polynuclear species
prevented higher level optimizations.

Optimized gas-phase structures were used as the starting
geometries for the simulations in aqueous solution. Such
computations were undertaken for one dimer species (cubic
box with a 12.5 Å edge and 49 H2O molecules) and one
form of the trimer (cubic box with a 15.6 Å edge and 77
H2O molecules; for the exact form, see section III.B).
Stabilities of these species in solution were determined by
equilibrating the systems at 300 K using a Nose´-Hoover
chain thermostat (of length 4, with frequency 500 cm-1)43-46

for 10 ps.

III. Results
A. Dimer Clusters. The structure of the dimer, constructed
as the starting point for the study, consists of two square
antiprism units, with corners occupied by H2O molecules
and Zr ions in the centers of the units; these units are
connected by two O containing bridges, with no direct
Zr-Zr bond (Figure 2). Water molecules were chosen for

the ligands following the structure of Zr4+ tetramer, which
is the only Zr polynuclear species whose structure has been
obtained both experimentally (e.g., X-ray studies) and by
computational means (Zr2(OH)62+ and Zr2(OH)7+, observed
experimentally, form in solutions with pH<3.5). Several
variants of the general dimer structure with respect to the
bridge composition were subjected to the CPMD simulation
in gas phase at 300 K. We tested the following structures:
(a) a dimer with two OH bridges [Zr2(OH)2(H2O)12

6+]; (b) a
dimer with an O and an OH bridge [Zr2O(OH)(H2O)12

5+];
(c) a dimer with an H2O and an OH bridge [Zr2(H2O)(OH)-
(H2O)12

7+]; and (d) a dimer with two O bridges [Zr2(O)2-
(H2O)12

4+]. The structure described under (c) proved to be
unstable, as the H2O bridge departed the cluster in the course
of the gas-phase CPMD simulation (we observe the following
reaction: [Zr2(H2O)(OH)(H2O)12

7+] f [(H2O)5Zr-(OH)-Zr-
(H2O)57+] + 3H2O). In the other three cases, the dimer
structures persist for about 3 ps (length of the simulation),
in the staggered conformation as described below for the
[Zr2(OH)2(H2O)12

6+] cluster. Due to the computational
expense associated with CPMD simulations, we focused on
only one structure for further investigations. The [Zr2(OH)2-
(H2O)12

6+] cluster was chosen based on its similarity to the
Zr tetramer structure.47

For the [Zr2(OH)2(H2O)12
6+] cluster, two initial conforma-

tions have been constructed (Figures 2 and 3). The first
conformation, which will be referred to as thestaggered
conformation, has H2O molecules which coordinate the two
Zr4+ ions, 36° out of phase with each other (Figure 2). In
the second conformation, the H2O molecules surrounding
two Zr4+ ions overlap each other (Figure 3), so this form is
referred to as theeclipsedconformation. Both structures were

Figure 2. Initial structure of the staggered zirconium dimer.
Two Zr4+ ions are connected by two O containing bridges and
surrounded by additional six H2O molecules each, in a
staggered fashion with respect to the each other. (a) Ball and
stick model. Yellow dots in the top view denote oxygen atoms
bound to the front zirconium ion. (b) Two square antiprism
monomer units are shown in different colors (green, gray) to
facilitate viewing. Zr4+ ions: yellow; oxygen atoms in the
bridging groups: blue; oxygen atoms in H2O molecules: red.
Side and top views are shown. Note that corners (bridge
groups and H2O molecules) of the antiprism units are stag-
gered with respect to each other. Hydrogen atoms are not
shown for clarity.

Figure 3. Initial structure of the eclipsed zirconium dimer.
Two Zr4+ ions are connected by two O containing bridges and
surrounded by additional six H2O molecules each, in an
eclipsed fashion with respect to the each other. (a) Ball and
stick model. (b) Two square antiprism monomer units are
shown in different colors (green, gray) to facilitate viewing.
Zr4+ ions: yellow; oxygen atoms in the bridging groups: blue;
oxygen atoms in H2O molecules: red. Side and top views
are shown. Note that the corners (bridging groups and H2O
molecules) of the antiprism units eclipse each other. Hydrogen
atoms are not shown for clarity.
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subjected to relaxation at 300 K followed by simulated
annealing in gas phase. During the relaxation phase (5 ps),
the eclipsed conformation converted to the staggered con-
formation and remained stable throughout the simulated
annealing. The staggered conformation, as expected, did not
change its general features in the course of this procedure.
Simulated annealing started from either the staggered or the
eclipsed forms resulted in the same optimized structure,
shown in Figure 4. These results indicate that the stable
conformation of the dimer is the staggered one, as a con-
sequence of a better accommodation of the steric crowding.

The annealed structure was optimized using plane wave
basis, yielding a roughly symmetrical final conformation,
with a Zr-Zr distance of 3.8 Å (Figure 4, Table 1). The
two oxygen atoms in OH bridges are 2.2 Å apart from each
of the zirconium ions. Oxygen atoms at the corners of the
pyramid bases of the two units are staggered with respect to
each other when viewed along the Zr-Zr axis. More
precisely, oxygen atoms at the corners of the top monomer
are 36° out of phase from those in the bottom monomer
(Figure 4). The structure was also subjected to optimization
using BLYP and the B3LYP/LanL2DZ level, with results
in close agreement to the ones described above (Table 1).
The obtained distance between Zr atoms and bridging O
atoms is in the range of the values published for related Zr
compounds in the solid state, such as the tetragonal (both
experimental and calculated) ZrO2 structure (2.09-2.44 Å)48

and the calculated amorphous ZrO2 (2.04-2.25 Å).49 The
Zr-Zr distance is, as expected, somewhat larger than in the
monoclinic ZrO2 structure (crystal structure data), which is
3.44-3.47 Å.50 Our values also agree with the calculated
gas-phase Zr-O bond lengths in a series of Zr(OH)n(H2O)m
monomers with varyingn, m (Zr-OOH: 1.9-2.2 Å;
Zr-OH2O: 2.2-2.4 Å).51

In order to explore the dimer structure in aqueous solution,
the optimized staggered structure was placed in a box with
49 H2O molecules. The system was allowed to evolve for
10 ps at 300 K using a Nose´-Hoover chain thermostat.
Analysis of the final trajectory revealed that both Zr-O radial

distribution functions (for the two Zr4+ ions) have peaks at
∼2.2 Å, whereas the corresponding number of integrals show
plateaus at 7 and 8, indicating different coordination numbers
for the two Zr4+ ions (Figure 5a). Further examination of
the trajectory revealed that one of the zirconium ions loses
one of the initially eight coordinating water molecules within
the first 1 ps of the simulation. We also note that the water
molecules bound to the complex do not exchange with the
bulk water molecules on the time scale of the simulation, as
evident from the flat and long plateau of the radial distribu-
tion function (g(r)) at the zero value between the peaks for
the first and the second shell of coordinated water (2.7-3.7
Å, Figure 5a). The Zr-Zr distance oscillates around 3.65
Å, with no drift (Figure 5b), indicating the general stability
of the cluster. The first shell water molecules are organized
around each zirconium ion in a pyramidal fashion (Figure
5c), the overall final arrangement being similar to that of
the gas phase, except for one pyramid that lacks a water
molecule. More specifically, the geometry of the first
coordination shell of the eight-coordinated Zr ion corresponds
to an antiprism, with the peaks of the angular distribution
function (the plotted angle is∠O-Zr-O) coinciding with
those of the ideal antiprism (70°, 82°, 108°, and 142°). The
peak at 70-85° (corresponding to the 70° and 82° peaks of
the ideal antiprism) stems from two kinds of O-Zr-O
angles:∠O-Zr-O formed by the oxygen atoms which are
next to each other and are located within the same pyramid
(ideally 70°), and∠O-Zr-O in which one oxygen atom is
from the top and the other one is from bottom pyramid, and
which are 45° out of phase from each other (ideally 82°).
Another peak is centered at 140°, and is produced by the

Figure 4. Optimized structure of the [Zr2(OH)2(H2O)12
6+]

dimer (BLYP/plane wave optimized structure shown; general
features are the same as in the B3LYP/LanL2DZ and BLYP/
LanL2DZ optimized ones; for the differences, see Table 1).
Views shown: (a) view along the Zr-Zr axis. Only bonds
connecting Zr4+ ions and oxygen atoms are shown. Yellow
stars in the top view denote oxygen atoms bound to the front
zirconium ion. (b) Side view, showing the plane consisting of
two Zr4+ ions and two OH bridges. Zr4+ ions: yellow; oxygen
atoms in OH bridging groups: blue; oxygen atoms in H2O
molecules: red.

Table 1. Geometrical Parameters of the Optimized Zr4+

Dimer (Zr2(OH)2(H2O)12
6+), Obtained Using Different

Computational Levelsa

BLYP/plane
wave basis

BLYP/
LanL2DZ

B3LYP/
LanL2DZ

Distance (Å)

Zr-Zr 3.751 3.871 3.819

Zr-OOH 2.195-2.218 2.251-2.255 2.226-2.227

Zr-OH2O 2.268-2.356 2.270-2.363 2.249-2.334

Angle (deg)

OOH-Zr-OOH 63.39-63.48 61.55 61.94

Zr-OOH-Zr 116.44-116.69 118.44-118.46 118.06

OOH-Zr-OH2O (1)b 75.80-91.07 77.27-94.57 77.17-94.53

OOH-Zr-OH2O (2)c 79.48-79.70 79.86-81.99 79.78-81.98

OH2O-Zr-OH2O (1)d 71.47-71.52 71.93-71.94 71.89-71.92

OH2O-Zr-OH2O (2)e 71.71-81.16 71.33-79.18 71.30-79.07

OH2O-Zr-OH2O (3)f 70.30-73.97 69.68-73.27 69.76-73.29
a The optimized Zr dimer has a staggered configuration, in which

two antiprism units are joined along the edge defined by the two OH
bridges. The pyramids that contain this OH-OH edge are defined
as base pyramids; the other two pyramids are defined as top
pyramids. b OOH-Zr-OH2O (1) refers to angles defined by hydroxyl
O, Zr, and water O atoms in the top pyramids. c OOH-Zr-OH2O (2)
refers to angles defined by hydroxyl O, Zr, and water O atoms in the
base pyramids. d OH2O-Zr-OH2O (1) refers to angles defined by water
O atom in the base pyramids, Zr, and the other water O atoms in the
same base pyramid. e OH2O-Zr-OH2O (2) refers to angles defined
by water O atoms in the base pyramids, Zr, and water O atoms in
the top pyramids. f OH2O-Zr-OH2O (3) refers to angles defined by
water O atoms in the top pyramids, Zr, and water O atoms in the
same top pyramid.
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O-Zr-O angle defined by oxygen atoms from the top and
bottom pyramids, 135° out of phase from each other (ideally
142°). A much less pronounced feature at 105-115° comes
from the O-Zr-O angle in which both oxygen atoms are
located within the same pyramid and are opposite to each
other (ideally 108°). The angular distribution function of the
seven-coordinated Zr ion is clearly distinct from the eight-
coordinated Zr case and indicates a pentagonal bipyramid
geometry. Its coordinating groups produce peaks at 75°
(angle between O atoms in the pentagonal base), 90° (angle
between O atoms in pyramid plane and pyramid corner), 140°
(angle between second nearest neighbors in the pentagonal
base), and 180° (angle between two pyramid apexes), coin-
ciding with the ideal pentagonal bipyramid peaks at 72°, 90°,
144°, and 180°. In both cases, departures from the ideal peak
positions and widths are due to thermal fluctuations as well
as the bending imposed by the existence of the two OH
bridges.

Although data for direct comparison with experimental
values are not available, the Zr-Zr and Zr-O distances fall
within the range of values observed in dinuclear zirconium
organometallic complexes, such as the one with the hepta-
dentate ligand dhpta (reported average Zr-Zr and Zr-O
distances are 3.5973 Å and 2.165 Å, respectively)52 and the
one with lactate ligands (3.5 Å and 2.0-2.2 Å, respec-
tively).53

In summary, we find that a dimer structure with two OH
bridges and 5-6 water molecules coordinating Zr4+ ions is
stable both in gas-phase and aqueous solution, on the time
scale of our simulation. The major difference between the
gas-phase and aqueous solution results is in that the aqueous
structure has one seven-coordinated and one eight-coordi-
nated Zr4+ ion, as opposed to the two eight-coordinated Zr
ions in gas phase. The arrangement of the terminal water
molecules and OH groups within the monomer units is either
square antiprism or pentagonal bipyramid, depending on the
coordination, and the spatial relationship between the two
units is such that water molecules are staggered.

B. Trimer Clusters. With an increasing number of Zr4+

ions, possibilities for different arrangements of the monomer

units increase rapidly. Although more trimer configurations
are conceivable, we focus here on two general configura-
tions: linear and stacked (Figures 6 and 7). The linear
structure consists of three antiprism units connected by
bridges (Figure 6); the more compact, stacked structure
consists of three monomer units joined by three bridges, each
shared by two adjacent Zr4+ ions, and one, central bridge
which is shared by all three Zr4+ ions (Figure 7). We
attempted several compact trimer structures with respect to
the nature of the bridges (the H2O bridges were not con-
sidered based on the dimer result described in the previous
section): (a) all four bridges are O2- ions; (b) all four bridges
are OH groups; (c) the central bridge, shared by three Zr4+

Figure 5. Zirconium dimer (Zr2(OH)2(H2O)12
6+) in solution. (a) The Zr-O radial distribution functions (g(r), solid lines) and

corresponding running coordination number integrals (NI, dashed lines) for the two Zr4+ ions. Note the difference between the
coordination numbers for the two Zr4+ ions (7 and 8). (b) Zr-Zr distance as a function of time. (c) Angular distribution function.
Angle plotted: ∠O-Zr-O. Arrangement of H2O and OH groups around the eight-coordinated Zr ion (red) corresponds to an
antiprism, whereas this arrangement around the seven-coordinated Zr ion (blue) corresponds to a pentagonal bipyramid.

Figure 6. Initial structure of the linear trimer ([Zr3(OH)4-
(H2O)16]8+). Three Zr4+ ions are connected by four OH bridges,
in a linear fashion. (a) Ball and stick model. Yellow stars in
the top view denote oxygen atoms bound to the front
zirconium ion, whereas open yellow circles denote oxygen
atoms bound to the middle Zr4+ ion. (b) Three square
antiprism monomer units are shown in different colors (green,
gray, purple) to facilitate viewing. Zr4+ ions: yellow; oxygen
atoms in OH bridging groups: blue; oxygen atoms in H2O
molecules: red. Side and top views are shown.
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ions, is an OH group (brown, Figure 7); the three bridges,
shared by two Zr4+ ions each (blue, Figure 7), are O2- ions;
(d) the central bridge is an O2- ion, and two out of three
bridges shared by two Zr4+ ions each are OH groups, with
the remaining bridge an O2- ion; (e) the central bridge is an
O2- ion, and two out of three bridges shared by two Zr4+

ions each are O2- ions, with the remaining bridge an OH
group; and (f) the central bridge is an O2- ion, and the three
bridges shared by two Zr4+ ions each are OH groups.

The initial configuration of the linear trimer was con-
structed by placing three Zr monomer units next to each other
so that the two sets of OH bridges (connecting the first and
the second unit, and connecting the second and the third unit)
are 90° out of phase with respect to each other to minimize
steric crowding effects. The Zr-Zr-Zr angle was set to 180°.
Each Zr4+ ion was surrounded by water molecules (six and
four for the terminal and middle Zr4+ ions, respectively) so
that the coordination of eight was achieved. In addition, a
bent linear structure was studied in which the Zr-Zr-Zr
angle was set to 132°.

The stacked trimer was constructed by arranging each of
the monomer units around three adjacent faces of a cube.
The joint vertex of these three faces of the cube is occupied
by the bridging group shared by three Zr4+ ions, while the
bridges that connect two Zr4+ ions each occupy the remaining
vertices (Figure 7). The Zr ions are placed above the center
of each face, and additional water molecules are added so
that each monomer unit is eight coordinated in an antiprism
configuration. The zirconium ions are placed at an equal
distance of 3.76 Å from each other. Intuitively, the stacked
structure (shown in Figure 7) should be more stable than
the linear one, due to its more compact geometry and
additional linking bridges with respect to the linear trimer
(6 bridges in the stacked trimer vs 4 bridges in the linear

one). Such a stability order was also observed in a compu-
tational study of Al3+ cluster species.54

We first attempted to obtain a stable trimer structure in a
fashion similar to the one used for the dimer: the described
initial configurations were allowed to relax at 300 K in the
gas phase. In the course of the gas-phase CPMD simulation
at 300 K, with the exception of the above-described structure
(b), which completely falls apart, all attempted stacked
trimers follow a similar behavior, in that two Zr4+ ions
remain at the distance of 3.0-3.2 Å, throughout the 7 ps
simulation time, whereas one Zr4+ ion moves to a longer
distances of 3.6-4.0 Å from the other two ions, extending
the related bridges. Due to the computational cost of CPMD
simulations (especially in aqueous solutions), we have chosen
one of the above-described structures ([Zr3(OH)3O(H2O)18]7+)
to extensively investigate with respect to both the gas-phase
and aqueous solution dynamics (the choice is based on the
structural relationship to the Zr4+ hexamer55). As we will
discuss later in the text, on the CPMD accessible time scale,
the trimer species exhibit a “breathing” behavior, in which
the Zr4+ ion which initially moves somewhat away from the
other two Zr4+ ions periodically comes back forming roughly
the initial stacked trimer structure.

In an attempt to further examine the stability of the stacked
trimer with respect to the Zr4+ ion drifting away from the
cluster, the simulation for [Zr3(OH)3O(H2O)18]7+ was re-
peated at 100 K and at 50 K, neither of which was able to
capture the anticipated degree of stability (i.e., no drifting
of the Zr4+ ion). We also used the following procedure: all
of the distances between Zr ions and O atoms were
constrained to 2.3 Å, whereas O-H bonds as well as the
corresponding bond angles and dihedral angles were permit-
ted to change in the course of the simulation. Thus the water
molecules around each Zr ion were allowed to relax to their
optimal positions, while the monomer units were forced to
remain bound to each other. The constrained CPMD simula-
tion was carried out for 5 ps at 300 K and was followed by
unconstrained simulated annealing using a scaling factor of
0.999. The stacked trimer remained mostly intact with only
a H3O+ moiety leaving the main cluster. The geometrical/
structural changes that occurred during the gas-phase simula-
tion are described below.

With respect to the linear trimer, a “straight” and a “bent”
form were tested. Both forms fall apart in the initial stages
of CPMD gas-phase simulation. We attempted the con-
strained CPMD simulation as described for the stacked
trimer, but, in the course of simulated annealing, the trimers
disintegrated by the cleavage into a monomer and a dimer
occurring at the OH bridges (resulting in one OH group
leaving with the monomer unit and the other one remaining
with the dimer). The geometry of the dimer is similar to the
one described in section III.A. In conclusion, no stable linear
trimer was observed.

The stacked trimer obtained from the constrained CPMD
followed by simulated annealing had the following properties.
The final configuration retained roughly its equilateral
triangular shape, with Zr-Zr distances of 3.60, 3.54, and
3.51 Å. However, two of the zirconium ions have the
coordination number of 7, while the third zirconium ion has

Figure 7. Initial structure of the stacked trimer. Three Zr4+

ions are connected by three bridges, and share another
bridging group through a second set of three bridges. (a) Ball
and stick model. (b) Three square antiprism monomer units
are shown in different colors (green, gray, purple) to facilitate
viewing. Zr4+ ions: yellow; oxygen atoms in bridging groups
shared by two Zr4+ ions each: blue; oxygen atom bound to
all three Zr4+ ions: brown; oxygen atoms in H2O molecules:
red. Side and top views are shown.
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a final coordination number of 8. During the simulated
annealing, one of the water molecules initially surrounding
a Zr ion moved away from the first coordination shell,
settling at the distance of 10.64 Å from the Zr4+ ion it
originated from, while abducting a proton from a water
molecule remaining within the cluster (bound to the same
Zr ion). Subsequently, a second water molecule broke away
from another Zr4+ ion and reached a stable distance of 4.5
Å from the Zr4+ ion it was bound to and that same distance
to the eight-coordinated Zr4+ ion. Thus, the resulting cluster
has two seven-coordinated Zr ions, one of which has a
terminal OH group instead of a H2O molecule.

The annealed structure was subjected to optimization at
the B3LYP/LanL2DZ level, with the resulting geometrical
parameters summarized in Table 2 (also see Figure 8). During
the B3LYP optimization, one H3O+ moiety moved away
from the cluster, resulting in a stacked trimer with three
seven-coordinated Zr units. In other words, in addition to
the two OH- and one O2- bridges, two of the three Zr ions
have one OH group and three water molecules in the
coordination shell. This structure was confirmed by BLYP/
LanL2DZ optimization (Table 2). The BLYP/plane wave
optimization was conducted starting from the geometry taken
at the 10th ps of the CPMD simulation following the
simulated annealing (discussed in the next paragraph). The
difference with respect to the B3LYP/LanL2DZ geometry
is that only one Zr ion has a coordination shell with an OH
group. Other geometrical parameters are in agreement with
the two other reported levels (Table 2). All Zr ions in the

three optimized structures have a distorted pentagonal bipyra-
mid configuration, with a range of values for the angles,
centered at the value of the ideal pentagonal bipyramid (see
footnote, Table 2). Further comparison with literature data
is not possible, since the literature information is scarce and
conflicting: no structure description has been published, and
several compositions have been suggested and disputed.1,56,57

To determine the stability of the observed structure, the
stacked trimer obtained from the simulated annealing process
described above was simulated further. After a 5 psgas-
phase equilibration at 300 K using a Nose´-Hoover chain
thermostat, the system was allowed to evolve for 50 ps.
During the 50 ps CPMD simulation, a third water molecule
(in addition to the two water molecules which left the cluster
during simulated annealing) moved away from the first
coordination shell of the remaining eight-coordinated Zr ion,
to a distance of 4.15 Å from the nearest Zr4+ ion, making
all three Zr4+ ions seven-coordinated, the same as that
obtained by geometry optimizations (Figure 9a). The remain-
ing bound water molecules produce a sharp g(r) peak at 2.2
Å distance for each of Zr4+ ions, with the running coordina-
tion number plateaus clearly at seven. In the case of the Zr4+

ion which has a terminal OH group in its first coordination
shell, we observe two peaks in the radial distribution
function: one at 1.8 Å, corresponding to the oxygen atom
of the terminal (not a bridging one) OH group, and another
one at 2.2 Å, stemming from oxygen atoms of terminal water
molecules. Also, after the initial 11 ps of the simulation, the
Zr4+ ion unit with one terminal OH- group started drifting
away from the cluster. It settled at a distance of∼4.1 Å
from the other two Zr4+ ions. This configuration persisted
for about 6 ps, when the Zr4+ ion unit drifted back to∼3.6
Å from the other two Zr4+ ions, and remained in this
configuration for about 2 ps, followed by another movement
to ∼4.1 Å from the other Zr4+ ions, where it again remained
for ∼5 ps. After coming close to the rest of the cluster
(remaining there for∼4 ps), this unit departed the cluster
again, this time remaining at∼4.1 Å for ∼15 ps (Figure
9b), afterward joining the cluster for>6 ps. Thus, we observe
an irregular oscillatory movement of one Zr unit with respect
to the other two. At each instance of this Zr4+ ion moving
away, the two other Zr4+ ions come closer to each other with
respect to their distance in the initial several picoseconds of
the simulation, as a consequence of decreased steric crowd-
ing. Moreover, the central bridging oxygen atom was
observed to move above and below the plane defined by the
three Zr4+ ions (Figure 9c) during the first 10 ps of
simulation. From this point onward, this oxygen atom was
found to remain on one side of the plane defined by the three
Zr4+ ions. Thus, at all the times, one atom or a group of
atoms was moving away from the rest of the cluster: in the
first 10 ps, it was the central, bridging O atom; afterward, it
was a Zr monomer unit.

The stacked trimer structure was then tested in solution,
by placing the structure obtained at the end of the gas-phase
constrained dynamics run in a box with 73 water molecules
(15.6 Å size) and simulating the system for 10 ps. We find
that all three Zr ions remain seven-coordinated (Figure 10a),
with oxygen atoms of the coordinating species at 2.2 Å from

Table 2. Optimized Geometry of the [Zr3(OH)3O(H2O)18]7+

Trimer, Obtained Using Different Computational Levelsa

BLYP/plane
wave basis

BLYP/
LanL2DZ

B3LYP/
LanL2DZ

Distance (Å)
Zr-Zr 3.487-3.604 3.588-3.607 3.553-3.572
Zr-OOH 1.903-2.221 1.914-2.318 1.901-2.296
Zr-Obridge 2.074-2.291 2.065-2.193 2.149-2.167
Zr-OH2O 2.193-2.368 2.241-2.356 2.224-2.327

Angle (deg)
Zr-Zr-Zr 57.97-61.20 59.75-60.26 59.74-60.28
OOH-Zr-OOH 106.56-111.67 100.18-113.94 106.90-108.64
Zr-O2--Zr 110.54-114.33 111.38-115.67 111.70-115.72
O-Zr-Ob 65.98-85.14 65.28-91.29 65.42-90.94
O-Zr-Oc 106.29-162.91 100.18-172.05 100.86-171.50
O-Zr-Od 74.63-133.83 71.24-134.17 71.61-134.26
O-Zr-Oe 146.59-152.79 147.05-151.63 147.12-151.86

a See text for the discussion about differences between the
optimized structures. b O-Zr-O refers to angles defined by O, Zr,
and O atoms in which the Zr and O atoms lay on the pentagonal
base, and O atoms are adjacent to each other. The value for such
an angle in an ideal pentagonal bipyramid is 72°. c O-Zr-O refers
to angles defined by O, Zr, and O atoms in which the Zr and O atoms
lay on the pentagonal base, and O atoms are not adjacent to each
other. The value for such an angle in an ideal pentagonal bipyramid
is 144°. d O-Zr-O refers to angles defined by an O atom located on
the pentagonal base, and Zr and O atoms are located below or above
the pentagonal base. The value for such an angle in an ideal
pentagonal bipyramid is 90°. e O-Zr-O refers to angles defined by
an O atom located below the pentagonal base, a Zr atom within the
base, and an O atom located above the base. The value for such an
angle in an ideal pentagonal bipyramid is 180°.
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the Zr ion. On the scale of the simulation, no exchange
between the terminal and bulk water molecules is observed.
Figure 10b illustrates the stability of the cluster within the
10 ps simulation timesthe Zr-Zr distances oscillate around
3.54 Å, with no drift. The spatial arrangement of the
coordinating species (one O bridge, two OH bridges, and
four H2O molecules) of the three seven-coordinated Zr ions
is somewhat different from the dimer seven-coordinated

unit: the locations of the peaks of the angular distribution
functions point to a significantly distorted pentagonal bi-
pyramid (Figure 10d). The∼72° peak, characteristic of the
pentagonal bipyramid (angle between the species on the
pentagonal base) is present. The main distortion from the
ideal pentagonal bipyramid occurs with the position of the
oxygen atoms perpendicular to the pentagonal base (axial
oxygen atoms); instead of a 90° angle with the base, we

Figure 8. Optimized structure of the stacked trimer ([Zr3(OH)3O(H2O)18]7+). (a) Structure optimized by BLYP/plane wave basis
set. (b) Structure optimized using the B3LYP/LanL2DZ basis set. The connecting lines show the pentagonal base in the pentagonal
bipyramid arrangement of each Zr unit (not the chemical bonds). The Zr4+ ions are located at the center of each base. The axial
oxygen atoms are connected to the Zr ions to show their axial position with respect to the pentagonal base. Zr4+ ions: yellow;
oxygen atoms in OH bridging groups: blue; oxygen atom bound to all three Zr4+ ions: brown; oxygen atoms in H2O molecules:
red. The oxygen atoms in terminal OH groups are marked by a yellow “x” sign. Side and top views are shown.

Figure 9. CPMD simulation of the stacked trimer ([Zr3(OH)3O(H2O)18]7+) in gas phase. (a) Zr-O radial distribution function
(g(r), solid line) and the corresponding running integral coordination numbers (NI, dashed line) for the three Zr4+ ions. (b) Zr-Zr
distance for all three possible pairs of Zr4+ ions (red, blue, and green lines). Note that one of the Zr4+ ions (red, blue) moves
∼4.2 Å away from the other two in the 11th, 19th, and 28th ps of the simulation and remains at that distance for ∼7 and ∼16
ps. As this happens, the distance between the other two Zr4+ ions shrinks slightly, as a consequence of decreased steric crowding.
(c) Distance of the O atom shared by the three Zr ions from the plane defined by the three Zr ions. The change of sign from
positive to negative indicates that the O atom is moving from one side of the plane to the other.
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observe an 85° angle. In addition, instead of an ideal linear
arrangement (180°) between the two axial oxygen atoms
around the same Zr ion, we find a peak at 155°.

In summary, we find that the stacked trimer is a possible,
but not very stable, structure in the gas phase. A notable
dynamical feature of the gas-phase structure is the oscillation
of one monomer unit (shown here through the motion of
the corresponding Zr4+ ion, Figure 9b), which might
ultimately lead to cluster disintegration on a longer time
scale. However, CPMD simulations beyond∼50 ps presented
here are not practical at this point in time. This motion was
not observed in the course of the simulation in aqueous
solution, due to the shorter simulation time as well as
constraints posed by water molecules that surround the cluster
(longer simulation, impractical at this time, is predicted to
show one monomer unit leaving the cluster as well). In the
course of the 10 ps simulation in solution, the species appears
stable, with Zr-Zr distances oscillating around 3.54 Å. All
three Zr ions remain surrounded by seven ligands (a bridging
O group, two bridging OH groups, and four H2O molecules;
unlike the gas-phase structure, no terminal OH groups were
found in the first coordination shell), arranged in a distorted
pentagonal bipyramid geometries.

IV. Discussion
The present CPMD simulations, along with those presented
in ref 47 show that several small Zr4+ polynuclear clusters
exist in aqueous solution as structures consisting of seven-
and eight-coordinated monomer units, with common features.
Whereas the dimer and the tetramer47 appear stable at the

picosecond time scale, the trimer undergoes internal motions
which indicate a possible cluster disintegration at a later
stage.

The basic structural motif seen in the studied forms is a
seven to eight coordinated Zr4+ ion, consistent with the
coordination assigned to the Zr4+ ion in general.7 The
zirconium ion is surrounded by H2O molecules and OH (or
O2-) groups, with Zr-O bonds of∼2.2 Å length. After a
certain coordination is assumed in the course of gas-phase
structure determination, the initial changes in the coordination
shells and settling to a certain coordination number, we do
not observe Zr-O bond breaking, i.e., exchange of the
terminal, bound H2O molecules with the bulk. Depending
on the coordination, the monomer units take either a
pentagonal bipyramid (seven-coordinated) or antiprism spa-
tial arrangements (eight-coordinated), the latter also observed
in the case of the tetramer.47 The strain imposed by the
binding pattern between the units induces different degrees
of distortion in these geometries.

The monomers are bound by O-containing bridges, result-
ing in another repeating, and stable structural motif. For the
dimer, we focus on the Zr(OH)2Zr unit, which also appears
in the tetramer species. However, such a pattern does not
hold the molecule together in the case of the studied linear
trimer: the Zr(OH)2Zr(OH)2Zr “backbone” of the trimer
breaks into a dimer and a monomer unit within a very short
time. A structure that seems to better accommodate the steric
crowding present in the trimer involves a bridging O atom,
which connects to all three Zr ions, and single OH or O
bridges between each pair of Zr4+ ions. The Zr(OH)2Zr

Figure 10. CPMD simulation of the stacked trimer ([Zr3(OH)3O(H2O)18]7+) in aqueous solution. (a) The Zr-O radial distribution
functions (g(r), solid lines) and corresponding running coordination number integrals (NI, dashed lines) for the three Zr4+ ions,
indicating their seven coordination. (b) Zr-Zr distance for the three pairs of the Zr ions, oscillating around 3.54 Å. (c) Distance
of the O atom shared by the three Zr ions from the plane defined by the three Zr ions. Unlike the gas-phase simulation, the O
atom did not move from one side of the plane to the other. (d) Angular distribution function for the three Zr ions (O-Zr-O angle
plotted), indicating a distorted pentagonal bipyramid arrangement of the coordinating oxygen atoms around each of the Zr ions.
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structural motif has a consistent geometry when the dimer
and the tetramer are compared: the Zr-Zr distance is∼3.8
Å and the Zr-OOH distance is∼2.2 Å. These distances are
shorter and more dispersed in the thoroughly studied stacked
trimer due to a much higher strain (3.5-3.6 Å Zr-Zr
distance and 1.9-2.2 Å Zr-OOH distance). Such a highly
strained trimer geometry is the probable cause of the
fluctuations of one of the monomer units.

As opposed to the tetramer, in which all the Zr ions are
eight-coordinated, one of the dimer Zr ions is seven-
coordinated. This lower coordination does not change in the
course of the 10 ps simulation of the dimer in aqueous
solution, i.e., a water molecule from the bulk does not fill
the vacancy (such a process was observed in, e.g., aluminum
chlorohydrate Al13 cluster, using the same simulation method
and on a similar time scale23).

The present work indicates not only that the stacked trimer
could exist but also that it may not be a very stable structure,
due to a highly strained core consisting of three Zr ions
connected by altogether four bridges, where one bridging
oxygen atom is shared by all three Zr ions. We observed
significant oscillations of one Zr monomer unit with respect
to the other two in the first 50 ps of the gas-phase simulation.
However, we were not able to detect a similar behavior in
solution, due to the confinement of the trimer by the water
formed cage around it. We suggest that this instability would
be detected in solution as well, if a longer simulation was
possible. This argument holds for a seemingly contradictory
finding of an X-ray study of the Zr, Ti, and Hf binding to
transferrin,2 a protein that regularly binds iron, which
suggests that the trinuclear cluster that is either grown within
the protein or bound to the protein cleft is very similar to
what we call the stacked trimer. The stability of the cluster
within the cleft in this case might be enhanced by the
confinement coming from the protein groups; without such
confinement, the fluctuations of one of the Zr monomers
would be possible.

V. Summary
Despite the importance and widespread use of zirconium
hydroxy polynuclear clusters, certain important and basic
aspects of their structure and dynamics are not known. This
lack of information in some cases limits or even rules out
our predictive power with respect to possible functions and
applications as well as activities in known applications. By
conducting a CPMD simulation study of the two smallest
Zr4+ polynuclear species, we have provided the necessary
basic information on their structure and dynamics in aqueous
medium, in which most of the applications are conducted.
Our study resulted in a detailed understanding of the
structure, including repeating motifs, which will be used for
studying larger Zr4+ polymers, such as the hexamer, and it
reveals for the first time possible configurations of the dimer
and trimer. Based on the observed fluctuating internal motion
of one Zr monomer with respect to the other two, we
postulate that the stacked trimer (structure obtained in our
study) has a somewhat unstable structure and might persist
only on a short time scale upon its formation, which might
be the reason for conflicting experimental reports regarding

its existence. Also, our study of the zirconium hexamer55

reveals that it can be viewed as built from the trimer units.
Thus, the trimer could be a transient species in the process
of hexamer formation.
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Abstract: Ab initio Car-Parrinello molecular dynamics simulations have been performed in

order to investigate the solvation properties of Mg2+ and Ca2+ in fully deuterated methanol solution

to better understand polarization effects induced by the ions. Charge transfer and dipole moment

calculations have been performed to give more detailed insight on the role of the electronic

reorganization and its effect on the first solvation shell stability. The perturbation of the methanol

H-bond network has been investigated.

Introduction
Simulation studies of the structural and dynamical properties
of solutions of ions in polar solvents are of great importance
to understand the effects of charged species on the physical
and chemical properties of ionic solutions. The presence of
ions can strongly perturb the structure of the liquid, and this
can have relevant effects on the chemical reactivity in
solution. In general a particular role is played by the stability
of the first solvation shell although in some cases the
perturbation extends farther away from the ion. Despite the
large variety of polar solvents of common use in chemistry,
only water1-11 and, to a lower extent, ammonia4,12,13 have
been extensively analyzed from the theoretical and compu-
tational point of view. A series of ab initio molecular
dynamics and cluster calculations on ions in these solvents14-20

has been performed showing the importance of polarization
interactionsinthereproductionof theexperimental results.1,21-24

At present, methanol, the smallest molecule characterized
by both a hydrophobic and a hydrophilic group, is widely
used as a solvent, but the number of computational studies
on the structural and dynamical properties of the liquid7,21-29

and its ionic solutions30-37 is limited. In the past few years
the interest on methanol has also grown as a possible fuel
cell component.38-42 Therefore, the comprehension of the

liquid methanol properties and its interactions with ions and
simple molecules is becoming of paramount importance.

In this paper, we report on ab initio molecular dynamics
simulations, within the Car-Parrinello (CPMD)43-46 formal-
ism, of Mg2+ and Ca2+ ions in methanol. Particular attention
has been paid to the structure of the first solvation shell and
to the change of ground-state electronic properties of the ions
and of the solvent molecules. This kind of approach has been
used with success to study ions in solution16,30,31,47-59 showing
that the most relevant effects are concerned with the first
solvation shell. The nature of the interactions that stabilize
the first solvation shell of the Mg2+ and Ca2+ ions in
methanol has been interpreted in terms of charge transfer
and polarization, confirming the stabilization model proposed
in the case of the Li+,30 Na+, and K+ ions31 in the same
solvent.

Computational Details
The simulations have been performed with the CPMD
code43,46 in cubic boxes of 12.05 Å and 13.99 Å side with
periodic boundary conditions using 25 and 40 methanol
molecules, respectively, and one ion. The initial configuration
with 25 molecules sample has been constructed starting from
the last configuration extracted from a previous Car-
Parrinello simulation of Li+ in methanol30 with the simple
ion substitution. The initial configurations for the larger
systems have been taken from the last configuration obtained
performing a preliminary classical simulation (>100 ps)
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using semiempirical potentials with Lennard-Jones param-
eters taken from the literature.60

After a thermalization at 300 K by velocity scaling (∼1
ps), the equations of motions have been integrated with a
time step of 5 au (∼0.12 fs) in the NVE ensemble storing
atomic coordinates and velocities for the subsequent analysis.
The simulation time has been of∼16 ps and∼9 ps for Mg2+

and Ca2+, respectively, in the 25 solvent molecules samples
and of∼11 ps for the samples with 40 methanol molecules.
The computational protocol adopted in previous works30,31,58

has shown that the time scale is sufficient to accurately
reproduce the structural properties. The correct conservation
of the energy, a sensitive parameter in CPMD charged
systems, has been monitored during the whole simulation
run.

Most of the analysis reported here have been performed
on trajectories from simulations of the larger samples.

The deuterium has been used instead of hydrogen to allow
for a larger time step. Density functional calculations in the
generalized gradient approximation (GGA) have been per-
formed using the BLYP61,62exchange correlation functional.
A ficticious electronic mass of 800 au has been adopted to
keep the system on the Born-Oppenheimer surface. The
plane wave (PW) expansion has been truncated at 70 Ry.

Martins-Troullier63 pseudopotentials (MT) have been used
along with the Kleinman-Bylander64 decomposition for the
C, H, and O atomic species. For the calcium ion preliminary
simulations with 25 methanol molecules have been per-
formed adopting either a MT semicore pseudopotential
(considering as core the 1s, 2s, and 2p electrons) or a
Goedecker semicore pseudopotential (SG)65,66 in order to
analyze possible effects of the pseudopotential choice. The
results of the two simulations showed very similar structural
properties as reported in the Supporting Information (Figure
1-S). In the larger samples, for both calcium and magnesium
ions, Goedecker65,66type pseudopotentials have been adopted
as in previous works on monovalent cations in methanol.30,31

The reliability of the pseudopotentials and of the compu-
tational approach chosen for the simulations and the subse-
quent analysis has been confirmed by the convergence of
the structural data with plane waves cutoff as reported in
Table I-S of the Supporting Information. A good binding
energy67 convergence at 70 Ry has been obtained. Consider-
ing the higher extension of the basis set used in this work
with respect to those present in literature,68 adopting the
B3LYP/6-31+G* level of theory calculations, the agreement
with the literature values is fairly good. The “all electrons”
calculations show a lower binding energy value for Mg2+

with respect to PWs expansion, with an opposite trend for
Ca2+, but in both cases the differences are lower than 2 kcal
mol-1.

Atoms in molecules (AIM)69-71 and maximally localized
Wannier function centers (WFCs) analysis72,73 have been
performed averaging over equi-spaced configurations in the
samples with 40 methanol molecules, every 0.08 ps for Mg2+

and 0.09 ps for Ca2+.

Results and Discussion
The systems have been initially simulated in samples with
25 methanol molecules. In the case of the Mg2+ a peculiar
behavior has been noticed. A 5-fold coordination has been
observed during the initial 7.3 ps of the run (see Figure 1)
with a square pyramidal basis coordination geometry (see
Figure 2a). Subsequently the number of methanol molecules
around the ion rises up abruptly to a stable 6-fold octahedral
coordination (Figures 1 and 2b).

In order to explain this behavior, the energy of the
optimized geometry for the two configurations (extracted
before and after the coordination number change) has been
computed for isolated clusters with “all electrons” calcula-
tions, using the BLYP functional and the 3-21+G** basis
set. The clusters coordinates are reported in Tables II-S and
III-S of the Supporting Information, and the first shell
configurations are shown in Figure 2a,b. The results show a
higher stability of the 6-fold coordinated cluster with a
difference in the binding energy of 29.95 kJ mol-1. This
value is about 1 order of magnitude higher than the thermal
energy at 300 K (2.49 kJ mol-1) and explains the observed
stability of the 6-fold coordinated ion once it is formed. The
initial 5-fold configuration can be attributed to the selected
starting configuration and to a likely too short thermalization
run (∼1 ps) with respect to the cage relaxation time.

It is interesting to note that the salient structural data for
the two parts of the simulation are not particularly different,
as in Figure 2-S of the Supporting Information. In particular,
comparison of the two partial pair distribution functions with
the total shows that the first peak position is not appreciably
affected by the variation of the coordination number.

In Figure 3 the pair radial distribution function for the
Mg-O and Ca-O distances, together with their integration
number, are reported for samples with 40 methanol molecules
and compared with the system containing 25 solvent
molecules.

It is evident that, for both ions, the sample dimension only
affects the second solvation shell that is slightly better defined
in the larger sample, showing clearly that it is formed by 6
molecules. In the case of Ca2+ a small effect on the height
and width of the first peak can also be noted implying a
greater rigidity of the first solvation shell in the smaller
simulation box. The stability of the second shell is higher
for the larger samples as it can be inferred from the slightly
deeper second minimum.

Figure 1. A dot is reported at each time step for a molecule
in the first solvation shell.
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Table 1 reports the position of the first peak in the radial
distribution function and the integration number.

It can be seen that the cutoff distance has no effect on
the coordination number due to the fact that the first
minimum in the g(r) is widespread. X-ray diffraction
studies74 locate the first peak position at 2.068 Å with a
“relatively rigid octahedral” cage thus proposing a 6-fold
coordination. Subsequent studies, supported by molecular
dynamics simulations,75 confirmed these findings although
with a first peak position at shorter distance (2.00 Å) than
the X-ray result. In the present calculation the first peak
position for Mg2+ solutions is found at a slightly larger

distance (2.15 Å). The results of the present simulation are
in full agreement with experiments76,77in the case of the Ca2+

ion.
For both ions the residence time of the methanol molecules

in the first solvation shell is longer than the simulation time,
and no exchange of methanol molecules has been observed
between the first and second solvation shell, as can also be
argued by the flat and deep minimum in the pair radial
distribution functions. A similar behavior has been reported
for water solution where many of these dications are
surrounded by a rigid first solvation shell that shows a slow
exchange of water molecules with the second shell.14,15,78-80

Earlier, diffusion coefficient calculations and solvation
simulations reported a very long lifetime for water molecules
in the first solvation shell around Mg2+, falling in the range
of hundreds of picoseconds.81,82

The small amplitude of motion in the cage is well evident
from the pair distribution functions (Figure 3) characterized
by a very sharp first peak. This is further emphasized by the
angular distribution function reported in Figure 3a-S along
with the spatial distribution function83-86 of Figure 3b-S
obtained from the configurational space spanned by the ion
considering a methanol molecule of the first solvation shell
as the reference system. As expected, the oxygen lone pairs
of the methanol molecules are steadily oriented in the

Figure 2. Mg ion and its nearest neighbors: (a) configuration extracted from the first part of simulation (pentacoordination) and
(b) configuration referred to the second part of simulation.

Figure 3. Pair radial distribution functions and integration numbers of Mg2+ (a) and Ca2+ (b) with 25 methanol molecules (dashed
lines) and with 40 methanol molecules (full lines), respectively.

Table 1. Salient Structural Data (Distances in Å) for Mg2+

and Ca2+ Solutions with 25 and 40 Solvent Moleculesa

O‚‚‚M2+ cutoff n(r)

Mg2+ (25) 2.15 3.00 5.6 (5 or 6)
Mg2+ (40) 2.15 3.00 6.0
Radnai et al.74 2.068 5.95
Tamura et al.75 2.00 2.5-3 6.0
Ca2+ (25) 2.40 3.25 6.0
Ca2+ (40) 2.40 3.45 6.0
Megyes et al.76,77 2.39 6.0
a The coordination number, n(r), has been computed at the cutoff

distance. The data are compared with experimental results.
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direction of Ca2+ with the COCa and HOCa tilt angles around
120° and 127°, respectively, with a small amplitude of
motion around the ion.

To better characterize the structure of the cage in the
larger sample salient average distances and angles are
reported in Table IV-S. A pictorial view of the first sol-
vation shell is shown in Figure 4 where the motion am-
plitude of the oxygen atoms around the ion is displayed.
The spanned configurational space is found to be strictly
localized around the vertices of an octahedron, particularly
for Mg2+, as can also be argued from the lower dispersion
of the data.

The perturbation on the solvent structure, due to the
presence of the ion, has been evaluated in terms of electronic

Figure 4. Spatial distribution functions for the first solvation shell of Mg2+ (a) and Ca2+ (b) in the system with 40 methanol
molecules. The isosurface represents the 13% and the 16% of the maximum value for Mg2+ and Ca2+, respectively. The methyl
groups have been represented by the green spheres.

Figure 5. Dipole moment for methanol molecules with Mg2+ (a) and Ca2+ (b). The green bars refer to the dipole moment of the
first shell molecules, whereas the blue bars describe the external molecules contribution. The average dipole moment of the
whole solution is represented by the white bars.

Table 2. Average Dipole Moment Values (in Debye, D)
and Relative Standard Deviation for the Solution (<µ>tot),
for the First Shell Molecules Contribution (<µ>fs), and for
the External Molecules (<µ>ext)

<µ>tot <µ>fs <µ>ext

Mg2+ 25 2.9 ( 0.4 3.4 ( 0.4 2.7 ( 0.3
Mg2+ 40 2.8 ( 0.4 3.3 ( 0.2 2.7 ( 0.3
Ca2+ 25 2.8 ( 0.4 3.2 ( 0.3 2.7 ( 0.3
Ca2+ 40 2.8 ( 0.4 3.3 ( 0.3 2.7 ( 0.4

Figure 6. Radial distribution function of the oxygen-WFCs
average distance (rO‚‚‚W) and angular distribution function of
the angle between the WFCs (θW‚‚‚O‚‚‚W) for Mg2+ with 40
methanol molecules (top) and for Ca2+ with 40 methanol
molecules (bottom). The dashed lines refer to the first shell
molecules contribution.
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properties that illustrate the differences from the pure
solvent.25 The polarization effects are evidenced by the dipole
moment computed through the maximally localized WFCs
and shown in Figure 5.

The ion perturbation mainly affects the neighboring
molecules that are highly polarized as it is seen from the
change of the average total dipole moment (∆µ ∼ 0.4 D).
In turn the dipole moment of the outer molecules approaches
the value of the pure liquid (2.6 D)25 remarking the weaker
perturbation at long range. These results are summarized in
Table 2 where it can be noted that the contribution to the
dipole moment does not depend on the system size. In a
recent paper,31 the polarization provided by monovalent
cations on the surrounding methanol molecules was found
weaker. The stronger polarization due to these divalent
cations with respect to monovalent ones has been also
reported in water solution.59

For alkaline ions the size of the ions increases going from
Li+ to K+, and, consequently, as expected, the induced dipole
moment of the solvent molecules decreases. This is particu-
larly evident for the first solvation shell molecules.31 For
magnesium and calcium ions a different trend can be
observed: the longer O-Ca distance does not yield a weaker
polarization effect with respect to magnesium ion, and the
perturbation on the dipole moment values is similar for both
ions.

Radial rO‚‚‚W and angularθW‚‚‚O‚‚‚W distributions of the
WFCs of the oxygen lone pairs have been investigated to
better understand the increase of the dipole moment of the
first solvation shell molecules.87 These are reported in Figure
6 showing separately the contribution of the first solvation
shell molecules.

A different shape in the distribution of therO‚‚‚W distances
and a lower value in theθW‚‚‚O‚‚‚W angles are observed for
the first shell molecules, whereas no change occurs between
the oxygen and the WFCs attributed to the O-H and O-C
covalent bonds (not reported). For theθW‚‚‚O‚‚‚W angle a
smaller value can be observed for the lone-pair WFCs of
the first shell molecules both in methanol and water
solution,16,50,87,88while a different behavior is present in the
rO‚‚‚W distance in the two solvents. A double peak in the
distribution of rO‚‚‚W is found for the external molecules in
methanol, while a symmetrical distribution has been found
for the molecules directly solvating the ion. In the bulk,
where no coordinative constrain is imposed, some methanol
molecules are directionally H-bonded25 through a single
WFC. The methanol H-bonded lone pairs are less contracted

on the oxygen than the noninteracting lone pairs providing
a splitting of the peak. No H-bond network is permitted
between the molecules of the first solvation shell. This can
be attributed to the steric hindrance of the CH3 group. The
first shell methanol molecules interact with the ion through
both the WFCs that are therefore not anymore available to
accept hydrogen atoms from other methanol molecules. This
is summarized in Table 3 (left panel) where the percentage
of solvent molecules that accept H-bond formation, via
oxygen atom, is reported along with the average number of
accepted H-bonds per molecule. It can be noticed that no
methanol molecule in the first solvation shell is a H-bond
acceptor.

The table also reports (right panel) the distribution of the
total hydrogen bonds in the system, showing that the majority
of methanol molecules are involved in two hydrogen bonds,
a result in agreement with finding in the pure solvent.25,89,90

Further insight on the solvent reorganization produced by
the ion is obtained considering the angleθµ between the
dipole moment vector (µb) and the oxygen-ion interaction axis
(see Figure 7).75,91

It can be seen from the figure that for the first shell
moleculesθµ is quite tightly peaked around 18°, indicating
a rigid structure of the solvation shell. For the outer
molecules the distribution is very shallow. A similar behavior
has been generally observed in water solutions47,49,59,92-95 and
only rarely in other solvents.32 This behavior can be further
enlightened considering the variation of the dipole moment
orientation and its standard deviation as a function of the
distance from the central ion (Figure 8).75,91-93

Neglecting the 3-4 Å range, where the statistics are rather
poor, it can be seen that, up to 5 Å,θµ increases smoothly,
and the deviations from the average value are small implying
that there is a preferential orientation of the dipoles in the
first and even in the second shell. Above 5 Å a higher
disorder in the bulk of the solution is evident. Similar results
have been obtained for Mg2+ (see Figure 5-S).

The charge-transfer analysis on the ions has been per-
formed using the AIM approach proposed by Bader.70 This
method also allows the evaluation of the amount of the
charge transfer as a function of the distance between the ion
and the surrounding solvent molecules as it is depicted for
Mg2+ with 40 methanol molecules in Figure 9.

The electronic charge transfer on the ions is 0.221( 0.003
e- for Mg2+ and 0.347( 0.008 e- for Ca2+. The same trend
was also observed in water solutions.59 A smaller electronic

Table 3. Hydrogen Bond Network Characterizationa

Mg2+ Ca2+ Mg2+ Ca2+

fs tot fs tot fs tot fs tot

f0 100 18 100 22 g0 100 1 99 3
f1 0 67 0 62 g1 0 18 1 23
f2 0 15 0 16 g2 0 65 0 58
f3 g3 0 16 0 16
<nf> 0.00 0.98 0.00 0.94 <ng> 0.00 1.95 0.01 1.85
a fi represents the percentage of methanol molecules whose oxygen atom is involved in i H-bonds, and <nf> is the average number of

received H-bonds per molecule; gi is the percentage of methanol molecules that totally form i H-bonds, and <ng> is the average number of total
H-bonds per molecule. The first shell (fs) molecules contribution has been put into evidence.
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displacement was observed for alkali metal cations together
with a weaker polarization effect on the first shell mol-
ecules.30,31The higher value for the calcium ion is due to its
greater softness with respect to magnesium as expected in
going down along the group in the periodic table.96 The same

number of valence shell electrons and the same charge on
Mg2+ and Ca2+ are distributed in a different atomic volume.
The higher ionic radius97,98 of Ca2+ implies a difference in
hardness,99,100namely the resistance of the chemical potential
to change the number of electrons.96 Ca2+ can receive a
greater charge amount from the first shell molecules that
become very positively charged. The charge transfer from
the second shell to the first is not sufficient to balance the
charge transferred from the methanol molecules of the first
solvation shell to the ion.

Conclusions
Ab initio CPMD calculations have been performed on
solutions of methanol with Mg2+ and Ca2+ in order to
investigate the reorganization effects on a protic solvent due
to the presence of charged species. The reliability of the
method has been stated by comparison with “all electrons”
calculations with a localized Gaussian basis set, showing
good agreement in the ion-methanol interaction. The first
solvation shell properties have been analyzed and compared
to the bulk solvent molecules. The structure of the solvent
has been investigated using distribution functions and the
electronic properties through the AIM population analysis
and the maximally localized WFCs. The box size effects have
been explored, and no evident consequence has been found
on the first solvation shell.

Similar structural and electronic reorganization is induced
on the solvent by the two ions. A stable octahedral coordina-
tion and a high polarization effect on the molecules of the
first solvation shell have been observed. Analysis of the
dipole moment vector has shown a preferential orientation
up to 5 Å far from the Ca2+ with an influence on the
organization of the second shell molecules as well. The
characterization of the hydrogen bond network has shown a
different trend with respect to that observed in water
solution16,50,87,88without any solvent molecule in the first
solvation shell behaving as a H-bond acceptor. Electronic
charge-transfer analysis has confirmed the stabilization of
the first solvation shell due to electrostatic interactions as
discussed in the literature.30,31

Figure 7. (a) Definition of the θµ angle between the dipole vector (µb) direction of the methanol molecules and the Ca-O axis.
(b) Distribution function of θµ for the system with 40 molecules. The full line refers to the first shell contribution. The dotted line
represents all other external molecule.

Figure 8. (a) Standard deviation on the average value of the
θµ angle as a function of the distance from the calcium ion in
the system with 40 methanol molecules. (b) O-Ca pair
distribution function (same as Figure 3b with full lines).

Figure 9. Charge-transfer distribution ∆q(e-) as a function
of the distance to the ion (upper panel) and not normalized
O-Mg distribution function (lower panel) for Mg2+ with 40
methanol molecules.
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Abstract: A versatile reaction coordinate, the “dynamic distance”, is introduced for the study

of reactions involving the rupture and formation of a series of chemical bonds or contacts. The

dynamic distance is a mass-weighted mean of selected distances. When implemented as a

generalized constraint, the dynamic distance is particularly suited for driving activated processes

by controlled increase during a simulation. As a single constraint acting upon multiple degrees

of freedom, the sequence of events along the resulting reaction pathway is determined

unambiguously by the underlying energy landscape. Free energy profiles can be readily obtained

from the mean constraint force. In this paper both theoretical aspects and numerical implementa-

tion are discussed, and the unique and diverse properties of this reaction coordinate are

demonstrated using three examples: In the framework of Car-Parrinello molecular dynamics,

we present results for the prototypical double proton-transfer reaction in formic acid dimer and

the photocycle of the guanine-cytosine DNA base pair. As a classical mechanical example,

the opening of the binding pocket of the enzyme rubisco is analyzed.

1. Introduction
A reaction coordinate (RC) provides a measure of the
progress of an activated process, such as a chemical reaction,
from an initial reactant to a final product state. The RC is
usually defined in advance without prior knowledge of the
actual pathway (or pathways), and so the choice of the
coordinate is guided by a preliminary postulated picture of
the reaction. Nevertheless, the reaction coordinate represents
a valuable tool to enforce a transition away from the reactant
state or toward the product state. This ‘coordinate driving’
approach is one of the valid methods for pathway search

reviewed recently1 which also provides a parametrization of
the associated complex free energy surface. To be successful,
a suitable coordinate must be constructed specifically for the
problem at hand. Numerous examples can be found in the
literature ranging from simple distance coordinates2 and
weighted combinations of distances3,4 to more abstract
coordination numbers5 or even energy.6,7 Activated processes
or reactions can be driven by implementing auxiliary restraint
potentials in the framework of umbrella sampling8 or by
applying holonomic constraints, as demonstrated in recent
applications of targeted molecular dynamics.9 Both these
approaches enable the computation of free energy profiles
using recently refined techniques10,11 and can be applied to
the study of a diverse range of systems from elementary
chemical reactions to large scale conformational transitions
in biological macromolecules.12 Nevertheless, any reaction
coordinate can (and usually does) provide a simplistic picture
of a reaction, being a compromise between free exploration
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of the pathway through phase space and optimal accuracy
of free energy.13

In this paper we present a novel reaction coordinate, the
‘dynamic distance’, which has been specifically designed for
the study of reactions involving the rupture and/or formation
of chemical bonds or contacts, such as salt bridges. This
flexible reaction coordinate, formulated as a mass-weighted
mean of selected interatomic distances, drives the activated
process without influencing the sequence or mechanism of
the events, such that the resulting reaction pathway is
determined only by the underlying potential energy land-
scape. As a single coordinate constructed from multiple
internal degrees of freedom, the dynamic distance possesses
some remarkable properties, in particular its ability to
automatize the search for low-energy reaction pathways and
identify energetically metastable and stable states on the
complex free energy surface. The dynamic distance, formu-
lated within the general theory of reaction coordinates,4

exhibits highly favorable mechanical and statistical properties
which simplify the computation of free energies. In the
following section we present the theory and general imple-
mentation of the RC. In sections 3 and 4 we demonstrate
the versatility of the dynamic distance with applications
employing both ab initio and classical molecular dynamics.
As the choice of examples shows, while the dynamic distance
is an extremely versatile constraint, it is particularly suited
to the study of association and dissociation events and proton-
transfer reactions, processes that play an extremely important
functional role in biological systems.

2. Theory
Consider a system with 3N Cartesian coordinates orN
position vectors in a configurationx given byx ) (x1....x3N)
) (r 1....rN). The dynamic distance,D, defined as

is the rms sum of distances between selected nonoverlapping
pairs (NOP) of atoms, whose positions,r i(t) and r j(t), are
time-dependent during the simulation. The square of each
distance is weighted with the associated reduced mass,µij

) mimj/(mi + mj), divided by an arbitrary constant mass.
Setting µ* to be the sum over all reduced masses,µ* )
∑NOPµij, the dynamic distance,D, becomes the usual rms
distance if the reduced masses of all atom pairs are identical.
The reaction coordinate can be employed to drive a reaction
by application of a time-dependent constraint,D ) D(t), or
to relax the system and to sample characteristic quantities
at intermediate positions using scleronomic constraints (D
) const). The use ofD as a restraint in umbrella sampling
simulations will be discussed briefly at the end of this section.

We now consider the RC as a functionD̃(x) of the
Cartesian coordinates (or position vectors) and the constraint
σ(x) ) D̃(x) - D ) 0. For an atomi which belongs to one
of the selected atom pairs, the constraint force is given by

When the leapfrog algorithm is used to integrate Newton’s
equations (or more precisely the Lagrange equations of the
first kind)

the numerical form becomes

wherer i* is the result of an unconstrained step in the time
interval, ∆t, under the influence of the force,Fi. The
Lagrange parameterλ ≡ f c, being the same for all atoms
defined in the RC is usually called the ‘constraint force’ and
is determined such that the constraint is satisfied. In this case,
λ can be calculated directly fromr i* and σ(x) by means of
a quadratic equation with no need for iteration. It can also
be shown using (3) that there exists an analytical form for
the constraint force

whereK represents the kinetic energy of the atoms involved
in the constraint. This simple expression arises from the
inclusion of the mass-weighting term and provides a nu-
merical check for the constraint force calculated from the
correction in (4).

Mechanical Properties.The dynamic distance formulated
as described above possesses several favorable mechanical
properties. First, as the RC is a function of interatomic
distances which are internal coordinates, application of the
constraint induces neither rotation nor translation of the
system. Second, the mass-weighting procedure ensures the
homogeneous action of the constraint across the system. This
can be readily proven: Using the constraint forces (2) and
the definition of the reduced mass, one finds that for the
change of a distance due to the action of the constraint in
lowest order

Obviously the relative change is the same for each atom
pair, and, in particular, lighter atoms such as hydrogen are
not influenced disproportionately by the constraint.

Statistical Properties. Phase space statistics can be
determined by the mass-metric tensor which results in the
so-called Fixman determinant14

In the present case,z ) 1/µ*, which is a constant and
constitutes the statistical advantage of the dynamic distance.
The immediate consequence proven by Fixman14 is a
coincidence of the probability density function (pdf) of the
unconstrained system in configurational space,P(qi,D), and
the pdf of the system constrained to constantD, Pc(qi;D),
{qi,D} being a complete set of generalized coordinates. As

r3 i ) vi andv3 i ) Fi/mi + f i
c/mi (3)

λ ) -
2K

D
-

1

D
∑
NOP

(r i - r j)‚
Fimj - Fjmi

mi + mj

(5)

∆(r i - r j) ) 1
2

(∆t)2 ( f i

mi
-

f j

mj
) ) 1

2
const‚(r i - r j) (6)

z ) det(H) ) ∑ 1
mi

(∂D
∂xi

)2
(7)

D ) (∑
NOP

µij

µ*
(r i - r j)

2)1/2

(1)

f i
c ) λ ∂D̃

∂r i
)

λµij

Dµ*
(r i - r j) (2)
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recently shown,11 the free energy can be obtained in a
straightforward manner directly from the constraint force and
the Fixman determinant. As the Fixman determinant is
constant in this particular case, the relevant formula simplifies
to

and the free energy is simply the integral over the constraint
force without any correction required. Equation 8 still holds
when further coordinates, such as bond lengths are con-
strained as long as they do not interfere with the constraint
on D.15 For activated processes along an RC, Carter et al.16

have derived an expression for the rate and have shown that
the Fixman determinant determines the effective mass
associated with the RC chosen. For the dynamic distance,
the rate,k, for the escape from a stable state (around a
minimum) betweenD0 andDq over a barrier (at a maximum
of free energy) atDq is

wherekTST is the rate given by transition state theory (TST),
κ is the transmission coefficient, andP(D) is the one-
dimensional pdf related to the free energy,A(D), by

Apparently the statistical advantage of a constant Fixman
determinant is essentially due to mass-weighting and has
wide consequences stated in eqs 8 and 9. The expression 9
for the rate depends on the definition of the RC but not on
the computation of free energy profiles from the constraint
force according to eq 7. Therefore, eq 9 also holds for profiles
calculated by umbrella sampling8 or umbrella integration.10,17

Forces derived from the umbrella restraint potential,σ2(x)
) (D̃(x) - D)2, induce neither rotation nor translation when
employing the dynamic distance.

3. Ab Initio Molecular Dynamics Applications
3a. Double Proton-Transfer Reaction in Formic Acid
Dimer. The dynamic distance constraint is readily
implemented within the framework of ab initio molecular
dynamics. In this section we present the application of the
dynamic distance constraint using Car-Parrinello molecular
dynamics to study proton-transfer events and dissociation
processes. We first apply the dynamic distance constraint
to the study of the well-known double proton-transfer event
(DPT) in the model compound formic acid dimer shown in
Figure 1. For this simple example, we discuss the technical
details concerning the implementation of the constraint
and show how one can extract accurate free energy pro-
files.

Methods. All calculations were performed using the
CPMD 3.4 package.18 The formic acid dimer was placed in
aperiodicallyrepeatingcellwithdimensions13.25× 13.25× 13.25
Å3. A fictitious mass of 400 au was ascribed to the electronic
degrees of freedom within the Car-Parrinello scheme. The
coupled equations of motion for atomic nuclei and molecular

orbitals were solved using the velocity Verlet algorithm with
a time-step of 4 au. For each nuclear configuration, the
Kohn-Sham equations were solved using the BLYP ex-
change-correlation functional.19,20Core electrons were treated
using norm-conserving Troullier-Martins pseudopotentials,21

and the valence electrons were expanded in a plane wave
basis up to an energy cutoff of 70 Ry in all simulations
performed.

The unconstrained system was first brought to thermody-
namic equilibrium at 300 K using a Nose´-Hoover thermo-
stat.22 For the constrained CP-MD simulations, the dynamic
distance constraint comprises two distances which represent
the two O-H chemical bonds. The dynamic distance was
initially set at a value of 1.925 au, which was the average
value of the dynamic distance in a 0.5 ps unconstrained MD
simulation, and subsequently was systematically increased.
The chosen increment in the step size was very small in the
initial stages of the reaction during the cleavage of the O-H
chemical bonds. For each dynamic distance,Di, the system
was re-equilibrated before starting a 1 ps‘production run’.
The simulation length employed provides sufficiently reliable
average constraint forces. Free energies were calculated by
numerical integration from the cumulative average of the
constraint forces using eq 8. The entropy contribution to the
free energy profile was calculated from the eigenvalues of

A(D) ) ∫〈λD〉cdD (8)

k ) κkTST ) κ x kBT

2πµ*
P(Dq) / ∫D0

Dq

P(D)dD (9)

P(D) ) const‚exp(-A(D) /kBT) (10)

Figure 1. Illustration of initial and target structures for the
double proton exchange in the formic acid dimer.

Figure 2. Average constraint force (top) and energy profiles
(bottom) along the reaction coordinate for formic acid dimer.
The free energy curve (black) was obtained by integration of
the force curve (top). The average finite temperature potential
energy is shown in red, the minimum energy profile in blue.
Energies are given relative to their starting values.
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the mass-weighted covariance matrix for each constrained
CP-MD simulation.23,24

Results. Figure 2 shows the average constraint force and
free energy profile along the reaction coordinate for formic
acid dimer. We observe the well-known concerted double
proton-transfer event. The average constraint force starts at
zero and rises to a maximum at 2.1 au. This positive
constraint force arises from the fact that the constraint is
driving the system away from the stable configuration, as it
‘pushes’ the protons across the hydrogen bonds, causing the
O-H chemical bonds to break. The average constraint force
then falls to zero at 2.35 au, which defines the transition
state for the reaction. At larger dynamic distances the average
constraint force becomes negative, which represents the
constraint acting to ‘hold back’ the protons as they try to
complete the DPT reaction. The concerted nature of the
reaction is represented by the single energy barrier in the
free energy profile, which reaches a maximum of 26.7 kJ/
mol at the transition state (a dynamic distance of 2.35 au).
Quasi harmonic frequenciesωi were calculated from the
mass-weighted covariance matrix and inserted into the
entropy formula23,24

After subtracting the entropic contribution, the resulting
enthalpy profile for the reaction is very similar to the
minimum energy path (MEP), as shown in Figure 2. The
small differences arise from the fact that the MD simulation
at 300 K is probing more configurational space than the
MEP. This is most noticeable for larger dynamic distances,
where the constraint is now acting on the newly formed
hydrogen bonds. The free energy and enthalpy profiles
presented in Figure 2 clearly demonstrate how well the
dynamic distance constraint controls the DPT reaction, in
comparison to previous constraints.25

To obtain correct free energy profiles, it is necessary to
verify that the simulation length for each constrained CP-
MD simulation provides a sufficiently reliable average
constraint force. This is best achieved by monitoring the
cumulative average constraint force.

Figure 3 shows the variation in the constraint force and
cumulative average constraint force over a 1 ps CP-MD
simulation at a dynamic distance constraint of 2.125 au.
While the constraint force varies quite significantly across
the trajectory from 0.01 to 0.065 au, the cumulative average
constraint force converges within 1 ps to an average value
of 0.039 au. The magnitude of the fluctuations in the
cumulative average constraint force over the last 400 fs of
the trajectory provides an estimate of the error used when
calculating the free energy profile as shown in Figure 2. The
rate of convergence of the cumulative average constraint
force is system specific and must therefore be determined
for the particular system of interest. In the case of formic
acid dimer, as shown in Figure 3 a 1 pstrajectory is
sufficiently long to liberate accurate converged average
constraint forces.

3b. Dissociation of Formic Acid Dimer. We extended
our study of formic acid dimer to investigate the dissociation
of the dimer using the dynamic distance constraint. The
principal aim of this analysis was to determine whether the
dissociation process is concerted or stepwise. In order to look
at this event, we implemented the constraint in a slightly
different way: Instead of performing a series of constrained
CP-MD simulations, each at a specific constant dynamic
distance, we started a simulation at a dynamic distance value
of 3.025 au and systematically increased the dynamic
distance by 0.0004 au per step across a single trajectory. In
this case, the dynamic distance constraint comprised the two
hydrogen bonds. The systematic increase in the constraint
therefore drives dissociation of the dimer. The growth rate
of 0.0004 au per step is small enough that the kinetic energy
of the electrons remains unperturbed during the simulation.
In the lower panel of Figure 4, we show the observed change
in the two hydrogen bond lengths across the trajectory.
Initially, both hydrogen bond lengths have a value of
approximately 1.6 Å. On increasing the dynamic distance
constraint over the first 2000 steps, both hydrogen bond

Sho ) ∑
i)1

3N-6

kB(pωi /kBT)(exp(pωi/kBT) - 1) -

ln(1 - exp(-pωi /kBT)) (11)

Figure 3. Trajectory of the constraint force (top) and cumula-
tive average (bottom) as obtained in a 1 ps run at a constant
reaction coordinate, D ) 2.125 au for FAD.

Figure 4. The lengths of a O-H chemical bond and an
H-bond over a 0.5 ps unconstrained CP-MD run (top). The
H-bond lengths in a constrained CP-MD run (bottom)
demonstrate that one bond breaks after 2000 steps.
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lengths increase to approximately 2.0 Å. After this point,
one of the hydrogen bonds breaks, and the associated
hydrogen bond length increases to over 3.5 Å. The other
hydrogen bond fluctuates, and its associated hydrogen bond
length varies between 1.8 and 2.05 Å. The upper panel of
Figure 4 shows the variation in the OH‚‚‚O hydrogen bond
length and the O-H chemical bond length over a short 0.5
ps unconstrained CP-MD simulation at 300 K. The hydro-
gen bond length varies up to 2.05 Å. These results clearly
demonstrate that the dissociation process occurs in a stepwise
fashion, a result that is consistent with that observed in CP-
MD simulations at higher temperatures (results not shown).
This simple example illustrates the versatility of the dynamic
distance constraint, which can be used to probe both the DPT
event and the dimer dissociation process. It also underlines
the fact that the constraint does not favor or bias the re-
action mechanism, be it concerted (DPT) or stepwise
(dissociation).

3c. Guanine-Cytosine DNA Base Pair: Ground-State
Proton Transfer and Excited-State Coupled Proton-
Electron Transfer. A further interesting aspect of the
dynamic distance reaction coordinate concerns its remarkable
predictive properties: Unlike atom-specific, local constraints,
such as simple distance and angle constraints, which are
chosen in advance in order to drive a system to a known
predefined product state, the dynamic distance is a flexible
collective reaction coordinate that comprises multiple internal
degrees of freedom. As such, when implemented ap-
propriately, the dynamic distance constraint automatizes the
search for the lowest energy reaction pathway(s) without any
specific a priori knowledge of the product state. A good
example of the predictive properties of the dynamic distance
constraint can be found in a recent study of irradiation-
induced damage mechanisms in the guanine-cytosine (G-
C) base pair,26 and the reader is referred to this reference
for computational details. For the purposes of this paper, we
merely summarize the general result.

The G-C base pair possesses three interbase hydrogen
bonds. Starting in the Watson-Crick geometry, there exist
a large number of possible single or multiple proton-transfer
reactions that can bring the system to a variety of different
hydrogen-bonded tautomeric states. The dynamic distance
constraint for this system was constructed using the three

N-H chemical bonds involved in interbase hydrogen bond-
ing. Similar to the method described in section 3a, we
performed a series of constrained Car-Parrinello MD
simulations in order to identify the lowest energy PT
reactions in both the ground and the excited electronic state
of the G-C base pair. The results are summarized in Figure
5. In the ground state, we observe a double proton-transfer
event over a large free energy barrier (64.3 kJ/mol) leading
to a meta-stable product state. In contrast to this, for the
singlet excited state, we observe a single proton-transfer event
over a very small free energy barrier (14.3 kJ/mol) leading
to an energetically favorable charge-transfer product state.
It is important to recognize that the same constraint,
implemented in exactly the same manner produces two
completely different reaction pathways, because the underly-
ing potential energy surface which is calculated ‘on-the-fly’
during the constrained CP-MD simulations is different in
the ground and excited states. For both reactions, the dynamic
distance constraint finds the energetically most favorable
reaction pathway, as confirmed by static post Hartree-Fock
calculations.27-29

In these simulations, the constraint was defined using the
three N-H chemical bonds for the interatomic distances.
However, if the constraint is formulated with the three
interbase hydrogen bonds, the average constraint force and
free energy profiles look rather different: In the initial stages
of the reaction the average constraint force profile rises
gradually to a maximum as the system is driven toward the
transition state. At the transition state, the average constraint
force decreases directly to zero, and the new chemical bond-
(s) are formed immediately. The constraint loses control of
the reaction as the flexible hydrogen bonds readily alter their
geometry slightly to allow the chemical bonds to form
directly while still fulfilling the conditions of the constraint.
Similar behavior was also observed in the case of targeted
molecular dynamics.25 The resulting free energy barrier for
the reaction is still accurately obtained by integration of the
average constraint force as the constraint controls the reaction
up to the transition state. Nevertheless, this simple example
demonstrates that one must choose the specific interatomic
distances carefully for the particular system in question in
order to define a constraint that can control the reaction along
the entire pathway.

Figure 5. Free energy profiles for the ground (lower panel) and excited (upper panel) state proton-transfer reactions in the
G-C base pair. The reactant and product states for the two reactions are shown graphically on the right.
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4. Classical MD: Opening the Binding
Pocket of Rubisco
The binding niche of rubisco is sealed by three structural
elements of which the large subunit’s C-terminal strand is
the outermost. In the closed conformation this element
stabilizes the catalytically active state of the protein (see
Figure 6).

The composition of the C-terminal tail influences the
substrate specificity of rubisco, which catalyzes the fixation
of carbon dioxide and molecular oxygen. The time window
hypothesis30 ascribes this to the dynamics of the tail which
may transiently lift off, thus interrupting catalysis. The
C-terminal strand is attached to the underlying protein corpus
by several ionic bridges,31 whose specific number varies from
homologue to homologue. In order to analyze the structural
dynamics of the C-terminal tail, these contacts were cleaved
using the dynamic distance constraint in the framework of
classical MD simulation. Free energy profiles were calcu-
lated, and the contribution of each salt bridge to the stability
of the enzyme’s closed, active conformational state was
estimated.

Methods. The four salt bridges are all of the following
type: -C-O2

-‚‚‚H2
+-N-Cς- (arginine). In order to allow

dynamical exchange among the carboxyl oxygens or guanine
hydrogens and to avoid interference with the bond length
constraints imposed on the NH2

+ moiety, the dynamic
distance of eq 1 is defined here as the rms carbon-carbon
distance for each of the four salt bridges. For the classical
MD simulations, the GROMACS simulation package32 was
employed with explicit SPC water and the force-field 43A1.
The simulations were performed on the rubisco structure
(1RBL) from the reference organism Synechococcus sp.
PCC6301. The two large subunits forming a functional L2
protomer including two binding niches were treated explic-
itly, while the missing adjacent subunits were emulated by
restraining harmonic potentials (kxyz ) 250 kJ mol-1 nm-2)
on heavy atoms involved in polar contacts to the neighboring
subunits. The binding niche was modeled, and the substrate

RuBP and the carbamylated K201 were parametrized as
described previously.31 Crystal waters were retained, and the
protein was inserted into a simulation cell flooded with bulk
water. The resulting system contained a total of 78 854
atoms. After an initial energy minimization, the system was
heated and brought to equilibration during a short 200 ps
MD simulation. A suitable electrostatic cutoff and reaction
field were used (rcp ) 0.8 nm,rcl ) 1.4 nm,rcrf ) 1.4 nm,
εrf ) 54). Bonds involving hydrogen atoms were constrained
using LINCS, and a time-step of 1 fs was employed. All
runs were performed at a temperature of 298.15 K and a
pressure of 1 bar, both regulated by a Berendsen thermostat
and barostat, respectively. After equilibration, a number of
conformations were extracted every 1000 ps from an
unconstrained simulation to be used as starting conformations
for the constrained runs.

Pathways and Free Energy.A pathway can be generated
by modulating the RC from an initial to a final value during
a so-called slow-growth simulation run. However, the
computation of the free energy profile (instead of the work
profile as immediately yielded by the slow growth run)
requires converged mean constraint forces obtained at
discrete points along the reaction pathway during a series
of relaxation runs.2,33 Due to the their rugged and heavily
structured energy landscape,34 difficulty arises when calculat-
ing free energy profiles for protein systems: In each
relaxation run, the system may evade into different pathways
thus rendering structurally discontinuous trajectories and
useless free energy profiles.35 To prevent such incidents a
novel variant of the equidistant relaxation protocol was
implemented in the rubisco simulations. The stop-and-go-
like (SNG) approach integrates the slow-growth and the
relaxation phases into a single simulation; the system is
equilibrated for a certain period of time in a scleronomic
“stop” phase (D ) const) in which the average constraint
force is calculated. The transition is then driven further in a
rheonomic “go” phase (dD/dt > 0). This procedure is
repeated for a certain number of equidistant points on the
RC. The average constraint forces of the stop phases are then
integrated to obtain the free energy profile of the particular
reaction path.

Optimization. Before performing the production runs, it
is necessary to optimize several parameters for the SNG
approach, paying consideration to the available computational
resources. These parameters include the number of equidis-
tant relaxation points,p, on the RC, the equilibration time
allowed at each of these points (relaxation phase:tstop), and
the fraction of this time period used to calculate the average
constraint force (measuring phase:tav e tstop). The total
resulting simulation time iststop + (p - 1)(tgo + tstop). The
RC was increased in steps of 1 nm from a starting value
0.45 nm, and the final constraint value was inferred from
unconstrained long-term simulations (5-10 ns) in which the
four salt bridges were observed to rupture spontaneously.

It was found that a relatively long relaxation period was
required in order to obtain well-converged average constraint
forces; however, the large forces observed in the initial stages
of the relaxation can safely be discarded. Optimum conver-
gence of the constraint force was achieved when considering

Figure 6. Three structural elements are sealing the active
site of rubisco: C-terminal strand (yellow) with terminus L475,
K128 (magenta) and loop 6 (green). Four ionic contacts are
stabilizing the closed, active conformation of the C-terminal
tail: The contacts E470-R131, L475-R41, and L475-R305
which are exposed to the solvent, and the buried bridge D473-
R134 which is conserved in all rubisco homologues. The
intrastrand salt bridge E470-K474 is not considered here.
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only the constraint forces obtained during the latter half of
the scleronomic phases (tav ) 0.5tstop).

The following performance parameters were considered
for further optimization: 〈df cum

c /dt〉: The slope of the
cumulative average of the constraint forcef c averaged during
the relaxation period of lengthtav as a criterion for the
convergence of the constraint force.〈σ(〈f c〉)〉: The standard
error of the average constraint force averaged during the
relaxation period as a criterion for the quality of the mean
constraint force.

Table 1 shows the average values of these quantities for
each run. The optimal parameter set was derived by the
ceteris paribusprinciple, i.e., each independent variable was
changed while keeping all others fixed. As optimal conver-
gence of the constraint force at each discrete point along
the reaction coordinate is the primary objective, the first
approach taken was to maximize that portion of the simula-
tion time spent on the scleronomic phases (relaxation). As a
consequence, in these runs only 1 fs was spent driving the
system in each rheonomic phase. The number of discrete
points was varied as well as the length of each scleronomic
phase accordingly. This was done in twoceteris paribus
groups for total simulation times of∼0.1 ns and∼1.0 ns. In
the third group, the available simulation time was equally
distributed between the stop and go phases which yielded
considerably better results. The total simulation time was
set to∼0.01 ns,∼0.1 ns, and∼1 ns. For this group, the
cumulative constraint force convergence is shown in Fig-
ure 7.

The results summarized in Table 1 show that in the present
case, an equal distribution of simulation time between the
rheonomic and scleronomic phases provides the best results
in terms of the criteria defined above. While it appears
sufficient to calculate the average constraint force at only a
small number of points along the reaction coordinate, slow
reaction coordinate modulation and long time scale equilibra-
tion phases are essential for good results. As a rule of thumb,

it is usually sufficient to check convergence of the constraint
force for the starting structure only to get an impression of
the necessary duration of the scleronomic phase.

In consideration of the general problem of accuracy in free
energy calculations,33 the convergence of mean forces was
checked in all cases. Extensive studies on the protein showed
that 1 ns runs produce reliable profiles without discontinuities
with the appropriate time allocations for driving, equilibrat-
ing, and averaging. This is important because the back
reactionsoften recommended as a testscannot be simulated
to the same degree of accuracy for complex activated
processes in large systems.

Results. Four 1 ns production runs on rubisco were
performed with the optimized parameters described above.
Although the free energy profiles of all simulations were
consistent in terms of convergence and error of the constraint
force, the specific forms of the free energy profiles were
somewhat different (data not shown). We conclude that the
system takes different pathways depending on the specific
initial geometry. Nevertheless the sequence of rupturing
events along the reaction coordinate and the relative contri-
bution of each salt bridge to the stability of the enzyme’s
active conformational state were the same in all runs. A
representative example is shown in Figure 8. The carboxy-
terminal contacts of L475 are seen to open first; these are
easily solvated and only play a minor role in stabilizing the
closed conformational state at room temperature. The highly
conserved bridge between D473 and R134 is cleaved last
and thus is the main player, while the contact E470-R131
plays a modulating role, which makes it sensitive to
specificity enhancing mutations. These results are in good
agreement with previously published data based on a
combined bioinformatic tools and TMD simulation ap-
proach.31

For the reaction path depicted in Figure 8 we calculated a
free energy barrier of∆A ) 25.37( 3.84 kJ/mol. The error
was estimated as described previously.2 Figure 9 shows the
underlying profile of the mean constraint force. Similar
values of ∆A were obtained from other production run
pathways, though this does not exclude the possible existence
of further reaction pathways with lower activation barriers.

Table 1. Results of the Parameter Optimization in Three
ceteris paribus Parameter Groupsa

p ttot (fs) tgo (fs) tstop (fs) tav (fs)

〈df cum
c /dt〉

(kJ mol-1

nm-1 ps-1)

〈σ(〈f c〉)
(kJ mol-1

nm-1)

20 100019 1 5000 2500 -20.48 9.44
200 100199 1 500 250 -181.67 133.26

2000 101999 1 50 25 1029.91 253.88
20000 99999 1 4 2 -5086.69 85.49

20 100019 1 50000 25000 -1.04 9.75
200 100199 1 5000 2500 -2.84 32.09

2000 101999 1 500 250 -30.28 98.53
20000 99999 1 49 25 -34.58 255.08

20 10140 260 260 130 -75.31 138.29
20 101400 2600 2600 1300 -16.99 41.38
20 1014000 26000 26000 13000 -0.42 14.37

a Maximal distribution of simulation time on the scleronomic phases
(∼0.1 ns and ∼1 ns, respectively, number of points variable), and
equal distribution to the scleronomic and rheonomic phases (20
discrete points, simulation time variable). Optimal performance values
are printed in boldface. 1 ns runs with an equal distribution of
simulation time for stop and go phases yields the best results (last
line).

Figure 7. Convergence of the cumulative constraint force at
various total simulation times (0.01, 0.1, and 1 ns). Only a
sufficiently long simulation time allows convergence of the
constraint force during the relaxation phase.
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To a single order of magnitude, the energy barrier is in good
agreement with the nanosecond time scale of the C-terminal
strand’s opening in the long-term simulations already
mentioned, though experimental rates are not available yet.

The path taken by the C-terminal strand during the
enforced transition was confirmed by comparing an inter-
mediate structure to results obtained from the long-term free
MD simulations mentioned above. Figure 10 compares
snapshots obtained from the constrained and free MD
simulations at the moment when the crucial salt bridge D473/
R134 is ruptured. All elements of the fluctuating system are
seen to adopt comparable configurations.

5. Conclusions
In this paper we have introduced a novel versatile reaction
coordinate, the ‘dynamic distance’, which has been specif-
ically designed for the study of reactions and activated
processes involving the cleavage and/or formation of a set
of bonds or contacts. The flexible reaction coordinate,
formulated as a mass-weighted mean of selected distances
does not bias or favor the sequence or mechanism of events

on the resulting reaction pathway. Due to the presence of
the mass-weighting term, the free energy profile for the
process is readily obtained by integration over the mean
constraint force without any correction, and the rheonomic
constraint driving this RC represents a minimal perturbation
in that it causes no net momentum or torque.

Using several examples in the framework of both ab initio
and classical molecular dynamics, we have demonstrated the
versatility of the dynamic distance constraint, paying par-
ticular attention to both the implementation and optimization
of the RC in order to obtain accurate reaction pathways and
free energy barriers. Our study of the DPT event in the
prototypical model system formic acid dimer reproduces the
well-known concerted reaction mechanism, and the size of
the activation barrier is in full agreement with previous
studies. However, the free energy profiles clearly demonstrate
an increased level of control compared to alternative
constraints.25 The predictive properties of the dynamic
distance have been highlighted using a recent application of
the constraint to automatize the search for the lowest energy
proton-transfer events in the G-C base pair in both the
ground and excited state.26 Using classical MD simulation,
we considered the opening of a binding pocket in a large
protein-water system (∼105 atoms). Proteins are known for
their complex glasslike energy landscape34 which opens a
manifold of pathways for such complex processes. The
constrained simulations produced both unproductive and
productive pathways. The latter exhibit activation barriers
and intermediate structures which compare well with avail-
able long time-scale free MD simulations. A common feature
of all the simulations is the unique sequence of events when
the crucial salt bridges are cleaved, which was in the focus
of the present study.

Except for simple cases, there is no way to decide whether
the best path was already detected by any method whatso-
ever. A second caveat concerns the directionality of coor-
dinate driving methods which tend to produce different
pathways during decreasing and increasing the reaction
coordinate. Therefore, repeated simulations with different
starting conditions and directions are suggested wherever
possible for determining realistic pathways.

Figure 8. Free energy profile and associated distances of
the four salt bridges as a function of the dynamic distance
constraint. The conserved salt bridge D473/R134 is the last
to open. The carboxyl-terminal contacts of L475 have a
negligible effect, while the E470/R131 bridge plays a modulat-
ing role in the stability of the closed C-terminal strand.

Figure 9. Profile of the average constraint force with error
bars across the reaction coordinate.

Figure 10. Comparison of structures with open C-terminal
tail obtained from constrained (1 ns; dark) and free (5 ns; light)
MD simulations. Both conformations are very similar, dem-
onstrating the use of the constraint to induce accurate
transitions in short simulation times.
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Among the broad range of potential applications, the
dynamic distance reaction coordinate is particularly suitable
for the study of important functional processes in biological
systems involving association and dissociation events and
proton-transfer reactions.
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Abstract: The calculation of free-energy landscapes in proteins is a challenge for modern

numerical simulations. As to the case of potassium ion channels is concerned, it is particularly

interesting because of the nanometric dimensions of the selectivity filter, where the complex

electrostatics is highly relevant. The present study aims at comparing three different techniques

used to bias molecular dynamics simulations, namely Umbrella Sampling, Steered Molecular

Dynamics, and Metadynamics, never applied all together in the past to the same channel protein.

Our test case is represented by potassium ions permeating the selectivity filter of the KcsA

channel.

1. Introduction
Molecular Dynamics (MD) simulation is considered today
the most powerful computational method to explore or
interpret specific protein functions, provided that a high-
resolution structure is known, and it has been widely applied
to study specific features of single-ion translocations through
nanometric membrane channels that underlie many important
physiological features.1

The power of the method relies on the possibility of linking
specific features of the permeation path with the peculiar

interactions existing among the permeating ions and between
each of them and the protein residues facing the permeation
pathway.

The main limitations of the method are due to (a) the
parametrization of the force field and its accuracy to take
into account the strong electrostatic interaction between ions
and proteins, (b) the computationally expensive very large
number of atoms forming the simulated system, and (c) the
way the complex electrostatics of the nanometric environ-
ment is tackled.

With reference to point (a) above, Allen et al. recently
compared the most widely used biomolecular force fields
using gramicidin A as a prototypical narrow ion channel
showing that a polarizable reliable force field would intro-
duce a significant enhancement of state-of-the-art results.2

The second problem listed above prevents the possibility
to directly compare results from MD simulations with
experimental results. It is in fact known that single-ion
translocations require typical times ranging from 10 to 100
ns. With the present hardware and software computation tools
only a few events can be observed with MD: they are useful
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to study the full permeation pathway but still not enough
for the straightforward simulation of a macroscopic ion flux.
To fill this gap computational approaches able to calculate
ion fluxes and including as much as possible the molecular
information of the protein in the input parameters and in the
model have been recently presented in the literature.3-5 They
all rely on more or less detailed information about the
potential of mean force (PMF) of the system formed by the
ions and the protein to identify the relevant occupation
configurations involved during the permeation process and
the probabilities associated with the transitions between them.
The use of these “mesoscale” simulation procedures allows
the linking of the atomistic description to the real functional
properties of the proteins and promises to become in the
future one of the investigation tools to be used for engineer-
ing protein functionality and fixing failures.

Mapping all the relevant structures of a complex PMF
from MD simulations is a very difficult task, especially in
view of the fact that an uncertainty of fewkBT in the
evaluation of a free-energy barrier can be very relevant when
the barrier height is used to estimate the transition prob-
abilities in the simulation of the conduction process.5 An
accurate MD estimate can be obtained with the use of many
reaction coordinates and long computer runs, which in some
cases makes the calculation in practice impossible. Thus very
relevant care is devoted to study when and how the
simulation problem can be suitably simplified to find a
reasonable trade-off between accuracy and resource demand.

For this purpose many computational techniques have been
proposed and applied in the literature to artificially “bias” a
simulation and force the time evolution of the system toward
a given transition of interest, depending on the case at hand.
Among them, we have chosen three methodologies relying
on very different computational strategies, namely Steered
MD6 (SMD), the most widely used Umbrella Sampling7

(US), and Metadynamics8 (MetaD).
The main aim of this investigation is to establish the degree

of reliability and the vulnerable aspects of these computa-
tional techniques on the basis of a common test on a
nanometric channel. To this purpose we report both the
evaluations of the free-energy profiles and the corresponding
technique-dependent error. This critical analysis seldom
accompanies this kind of calculations. Our test case is
potassium ions permeating the selectivity filter of the
bacterial potassium channel KcsA fromStreptomices liV-
idans.9

The KcsA structure is known from X-ray investigations,
further confirmed by MD simulations. The potassium
permeation of this channel takes place through a short and
narrow region of the protein, called the “selectivity filter’’.
Seven stable binding sites have been identified, usually
referred to asSext, S0, ..., S4, Scav in which, alternatively,
potassium ions and water molecules are found. The two
outermost sitesSext andS0 were both first predicted in MD
simulations10 and subsequently observed in the higher
resolution X-ray structure.9 Sext can fictitiously be made
collapsing ontoS0 when the conduction properties of the
channel are investigated because its position is diffuse and
quite close to the bulk water phase. Two ions must always

reside in the regionS1, ...,S4 in a stable conductive situation,
otherwise the protein changes its conformation and switches
to a nonconductive state. The conduction process involves
the simultaneous and concerted movement of ions in a single
file, giving origin to a cycle of different occupancy configu-
rations, as indicated in the sketch reported in Figure 1 (site
Sext is not represented). A proper free-energy barrier identifies
each transition between different configurations. In this study
we are interested in mapping the free-energy profile associ-
ated with internal transitions (i.e., transitions not involving
new ion entries or exits), labeled as (t) or (d) in Figure 1.

The choice of the KcsA channel as the test case for our
analysis is justified by the fact that in this highly selective
nanometric channel ions move in single file along a pore
which is roughly their size and strongly interact with each
other and with the protein environment, thus producing
physical challenging conditions for any molecular simulation.

Moreover, this system was deeply investigated in the past
by means of the US technique, and many results to compare
it with can be found in the literature.3,10-12 To our knowledge
MetaD was exploited in the past to study chlorine channels,13

and it is here applied to the KcsA case for the first time.

2. Methods
2.1. Modeled System. Our starting point is the most recent
X-ray structure of the KcsA solved at 2.0 Å resolution (PDB
code 1K4C), inserted in a slab composed by 500 octane
molecules mimicking the cell membrane. We solvated with
8802 water molecules, and 24 chlorine ions were used to
keep the system electrically neutral. The final system,
analogous to the one reported in the literature,14 is composed
of 34 434 atoms.

Figure 1. Configurations considered in the model and
transitions among them. A sketch of the selectivity filter
is reported on the left; site Sext is located on top of site S0,
and it is not represented. Open circles stand for water
molecules, and solid circles stand for potassium ions. Labels
(m), (c), (d), and (t) mean an ion entry/exit into/from site S0,
for an exit/entry from/into the cavity site Scav, for a two-ion
concerted motion, and for a three-ion concerted motion,
respectively.
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Calculations have been carried out with the GROMACS
3.3 package15,16 for SMD and US simulations and with the
ORAC code17 for MetaD, using in all cases the standard
GROMACS force field (also known as GROMOS 87) for
the protein and SPC model for water. This combination of
force fields showed its capability to keep the positions of
the binding sites in the selectivity filter stable after equilibra-
tion time.

The system has been initially fully equilibrated for 1.2 ns
using GROMACS, in which the first 200 ps were useful to
heat the structure from 100 to 300 K. After equilibration
the simulation box is approximately 6.9× 6.9 × 9.7 nm;
then a further short equilibration (a few hundred picoseconds)
was performed after the introduction of the biasing potential
to obtain a starting configuration for each of the selected
techniques and respective MD codes.

Electrostatic interactions have been computed using the
smooth particle-mesh Ewald (PME) algorithm18 implemented
in the two codes with a fourth-order interpolation function,
a grid of 72× 72× 100 points (corresponding to a mesh of
less than 0.1 nm wide), and a cutoff in the direct and
reciprocal space of 1.2 nm and 0.042 nm-1, respectively.
Considering the nanometric width of the selectivity filter,
we also tested higher-order functions. However, a finer
treatment of the PME did not add any further contribution
or improvement to the present results and does not justify
the increased computational burden.

All simulations have been carried out in the NVT
ensemble, using the Nose-Hoover temperature coupling
(reference temperature 300 K, time constant between 3 and
5 ps). A time step of 1 fs was used in GROMACS runs; the
r-RESPA algorithm19 was used in ORAC in conjunction with
the rattle-shake algorithm to fix covalent bonds involving
hydrogen atoms. The time steps used in the RESPA
algorithm were 0.5-1-2-4 and 12 fs.

2.2. Computational Strategies To Bias MD Simulations.
In the following a short overview of the three techniques
applied in our calculations to bias the system toward the
transitions of interest is presented, with the purpose of
pointing out the theoretical assumptions and the computa-
tional strategies, which can possibly produce qualitative and
quantitative effects on the results. Details are also provided
about the values of the parameters used in our simulations
for the KcsA case. These parameters have been fixed in order
to optimize the convergence of the methods used to study
the physical system at hand, but the sensitivity of each
technique on its parameter set is beyond the scope of this
work and it was not tackled with detail.

In the following we use PMF as a synonym for free-energy
profile as a function of a set of chosen coordinates, which
are also called reaction coordinates.

2.2.1. Umbrella Sampling.The problem of calculating the
PMF is tackled with US technique20 by adding a fictitious
term to the HamiltonianH(x,p) of the system under
investigation

wherex andp are the positions and the momenta of all the
atoms of the system of interest.

This term is a static harmonic biasing potential, function
of a chosen reaction coordinater ) r(x), and center around
at a given positionri:

hi(r) is used to restrain the reaction coordinater in the
neighborhood ofri, thus enhancing sampling of that region
of the configuration space.

The center positionri of the biasing potential is varied
step by step along a defined path to obtain a set ofN partially
overlapping windows, each of them providing an ion
probability distribution functionFi(r). These distributions are
then combined together to give the unbiased PMF by means
of the weighted histogram analysis method (WHAM).21

Following the scheme suggested by Souaille and Roux,22

the unbiased total distribution probabilityFu(r) is defined as

whereâ ) 1/kBT, C can play the role of a normalization
constant,ni is the weight of the simulation of theith window,
i.e., the number of configuration samples used to compute
Fi(r), and coefficientsfi, coming from the adding of the
biasing potential, are calculated by an iterative solution of
the formula

The PMF is finally calculated by means of a generalization
of the reversible work theorem23

wherer0 is a reference point.
If more than one reaction coordinate is used in the

simulation, the overall biasing potential is given by a sum
of terms of the type reported in eq 2; in this case the center
positions of the biasing potentials are varied on a grid on a
multidimensional surface.

2.2.2. Steered Molecular Dynamics.SMD as well makes
use of an added biasing potential to force the system to visit
high free-energy regions. Contrary to the US technique,
where the system is driven to the region identified byri (eq
2) and there statically remains until the following window
is considered, in this case the added potential is continuously
varied in time until the system reaches its ending configu-
ration.

Therefore eq 1 is still valid, but in this case the new
Hamiltonian is also a function of time that appears explicitly
in the expression of the new biasing potential

hi(r) ) 1
2

k(r - ri)
2 (2)

Fu(r) ) C ∑
i)1

N ni exp[-â(hi(r) - fi)]

∑
j)1

N

nj exp[-â(hj(r) - fj)]

Fi(r) (3)

exp(-âfi) ) C∫ dr ∑
k)1

N nk exp(-âhi(r))

∑j)1
N nj exp(-â(hj(r) - fk))

Fi(r)

(4)

G(r) ) G(r0) - kBT ln
Fu(r)

F0
u(r0)

(5)

h(x, t) ) 1
2

k[r(x) - (µ0 + Vt)]2 (6)

H̃(x,p) ) H(x,p) + hi(r) (1)
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where µ0 is the initial center position of the restraining
potential, andV is the pulling velocity. This framework
resembles atomic-force microscope experiments where a
molecule is pulled between two positions, being subject to
a time-varying external force.

The evaluation of the PMF relies on the Jarzynski’s
identity.24 This equality links the equilibrium free-energy
differences∆G between the states A and B to the workW
done on the system through all the nonequilibrium processes
leading it from A to B. According to the second law of
thermodynamics,∆G represents the lower limit of〈W〉: 〈W〉
g ∆G, the equality being valid in the limit of quasi-static
(or equilibrium) processes.〈〉 denotes an ensemble average.
Jarzynski, however, proved that the following equality holds
true regardless of the speed of the process:

The general validity of eq 7 depends on a small number
of trajectories whereWi e ∆G. The probability of these
events decreases exponentially as the speed of the process
increases, thus a large number of simulations is needed to
handle a reliable statistical ensemble with even a relatively
high pulling velocity. In practice, despite its theoretical speed-
free validity, the applicability of this equation is limited to
slow processes, whose energy fluctuations are comparable
to kBT, and a number of trajectories have to be combined
together to obtain significant results.

By means of eq 7, one gets the free-energy of the system
described by H˜ that must be corrected by subtracting the term
due to the perturbing potential. Following the procedure
described by Hummer and Szabo,25 one finally gets the
expression for the free-energyG(r), as a function of the
chosen reaction coordinate

where the two summations are over time stepst, h(r,t) is
the perturbing potential defined in eq 6, andwt is the work
done on the system until timet. Note that for this kind of
simulation a single reaction coordinate is used, so that a one-
dimensional analysis is performed.

An improvement of SMD results can in principle be
obtained by the Crooks equation26 that makes use of both
the forward and the backward average work and extends the
Jarzynski identity. Whenever the hypotheses of the transient
fluctuation theorem are satisfied, the works of the forward
and backward transitions can be mixed together to give a
better estimate of the PMF profile.

2.2.3. Metadynamics.MetaD8,27-29 is a recently introduced
technique based on the idea of the complexity reduction,
being able to speed up the evolution of some defined reaction
coordinatesrk(x) with the introduction of a “history-depend-
ent” biasing potentialV(rk,t). The latter is the sum of
repulsive functions that are added at given time steps during
the simulation in order to constitute a “penalty” term for
configurations already visited in the space of the reaction

coordinates. These repulsive functions fill the minima of the
PMF and, after a long simulation, tend to compensate exactly
the underlying PMF that, in turn, can be approximated by
their sum. If Gaussians are used as repulsive functions for
the potential, then eq 1 rewrites

wherewi and ∆rk are the height of the repulsive potential
and the scale factor for thekth coordinate, respectively. The
outer summation (indexi) is over time steps. The scale factor
defines the range of action of the repulsive potential and
represents a sort of resolution of the reconstructed PMF.

The main advantage of MetaD with respect to US is that
it is not required to define a priori the range of variation of
the reaction coordinates, letting the system evolve toward
the lowest transition state, thus obtaining the minimum free-
energy landscape along the path connecting the two minima.
This prevents the sampling of uninteresting regions, and, in
principle, it allows the introduction of a high number of
reaction coordinates. Similar approaches have previously
been exploited to explore the configuration space, such as
the taboo search,30 and the local elevation method.31 More-
over, MetaD can also be considered as an extension of the
Wang-Landau algorithm,32 and it is closely related to the
recent adaptive force-bias algorithm,33,34where the derivative
of the free-energy along a reaction coordinate is reconstructed
by means of an adaptive time-dependent bias.

However, the use of a time-dependent biasing potential is
in some way a nonequilibrium procedure with respect to the
other degrees of freedom, especially to the so-called slow
modes. When the latter are not included in the chosen set of
reaction coordinates, the choice of the parameters controlling
the repulsive potentials (i.e., deposition time step, height and
scale factor) is crucial to let the system equilibrate each time
a new term is added. The efficient sampling of nonexplicit
slow modes within MetaD can be tackled in different ways,
either improving the sampling with the replica exchange
method,35 or by means of the bias-exchange metadynamics,36

or correcting the reconstructed PMF with a subsequent
refining US.37

2.3. Choice of the Reaction Coordinates. A computa-
tional mapping of the free-energy profile for potassium ions
in the KcsA protein was already done in the past3,10by means
of multidimensional US. In that case, the authors used a
number of occupancy configurations corresponding to the
case of two ions within the selectivity filter, independently
varying the position of these two ions together with that of
a third ion in the cavity. More than 300 simulations were
needed (leading to an aggregate total simulation time of 36
ns) which, in turn, implied a significant computation time.
The obtained free-energy maps confirmed that the conduction
process takes place as several consecutive steps in which, if
the two ions within the filter move, they always move
concertedly. This picture of the permeation process suggests
the possibility of using a single curvilinear coordinate to
describe ion motion within the US framework, thus avoiding

〈e-âW〉 ) e-â∆G (7)

G(r) ) - 1
â

ln
∑t

〈δ(r - rt)exp(-âwt)〉
〈exp(-âwt)〉

∑t

exp[-âh(r,t)]

〈exp(-âwt)〉

(8)
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i
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2
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to explore paths along which the system will never evolve
due to excessively high energy. A further confirmation of
what above stated can be deduced by analyzing the PMF
plots reported in the reference work by Berne`che and Roux.10

It can be observed that the preferred pathways can be split
into segments where only one of the selected coordinates
moves significantly, the others being confined in a narrow
well centered on their initial value. The identification of a
curvilinear coordinate to reduce the amount of CPU time is
possible, though not trivial at all because it must not force
unphysical movements of the ions.

The SMD technique seems to be suitable for a similar
procedure. Under physiological conditions the ion flux
through the channel is driven by a transmembrane potential,
resulting from a charge imbalance between intra- and
extracellular environments. As a consequence a potential that
changes along the channel axis should exist, and the reaction
coordinate should follow this observation. A natural choice
of reaction coordinate is thus thez value of an ion’s
coordinate in a Cartesian orthogonal reference system, also
taking into account the strong ion confinement in thexy
plane.

Three simulations have been performed, using the position
of the top outermost ion (initially labeled asK2), the position
of the middle ion (K4), or the position of their center of mass
(Kcom) as reaction coordinates, respectively. We would like
to point out again that this technique implicitly accounts for
one-dimensional analysis, bounding the position of one ion
(or group of ions) to the pulling spring and, in practice,
forcing in this way the ions’ motion. An analogous choice
of reaction coordinates has also been performed for the US
simulations, for comparison purposes.

The case of MetaD requires a different approach. The
chance to sampleat the same timedifferent reaction
coordinates together with the use of a history-dependent
potential term automatically drives the dynamics of the
system along the minimum energy path, thus avoiding the
exploration of undesired regions, where one can suppose a
priori that the system will hardly pass through. The reader
easily understands that the choice of a suitable minimal set
of coordinates is far from being a trivial point. In order not
to waste time, coordinates must be independent from each
other and represent a minimum set able to describe the
evolution of the system under investigation, including the
slow-modes. Preliminary investigations focused on the
definition of the appropriate coordinates are often needed.
In this case we found that the most effective set of
coordinates is represented by the positions of the ion in the
cavity Kcav and of the middle ion in selectivity filterK4. It
should also be noticed that a fair comparison of the US and/
or SMD sampling with MetaD under equivalent conditions
implies to project then-D free-energy profile from MetaD
along the minimum-energy path, i.e., as a function of a single
curvilinear coordinate making use, for instance, of the nudged
elastic band (NEB) method.38 A second benefit of MetaD is
represented by the possibility to introduce coordinates not
linked to the physical position of the ions, e.g., the water
coordination number of the ion in the cavity. It is likely to
suppose that the hydration/dehydration process affecting the

ion in the cavity may be significant in the permeation process
as much as the position of the ions in the selectivity filter.
This concept has been underlined in different channels by
Gervasio et al.39 and Braun-Sand et al.40

2.4. Parameters and Computational Details.One of the
major points concerning the comparison among different
techniques aiming at the same result is the proper choice of
simulation parameters for each technique to avoid that one
technique outperforms the others only because of an unfair
set of parameters.

The state of the art of US simulations for the KcsA channel
is reported by Berne`che and Roux,10 where the system was
investigated with great detail, and it is used as a guide in
the following. We used a force constantk ) 8368 kJ/mol
nm2 (20 kcal/mol Å-2) and a step between two consecutive
centers of the biasing potential (ri) ∆r ) 0.05 nm to respect
the overlapping constraint. Up to 18 steps, 515 ps-long each,
have been combined together, and the biased distributions
have been reconstructed by 250 bins ranging from 3‚10-3

to 3.8‚10-3 nm in width, depending on the chosen reaction
coordinate, as described in the next subsection.

The first 15 ps of each simulation were used to adjust the
biasing potential to the new position, starting from the
previous configuration. Then the following 250 ps were
discarded as equilibration time in the presence of the biasing
potential. The remaining 250 ps were then split into 5 blocks
of 50 ps, and, finally, the results were averaged. The reaction
coordinate was recorded at every time step, for a total
productive sampling roughly about 2 million configurations
per reaction coordinate. By this protocol it was possible to
calculate the statistical error of the estimated PMF, which
results to be about(1 kBT at room temperature (correspond-
ing to 2.5 kJ/mol).

In the absence of previously published studies on the KcsA
channel with SMD, we performed several preliminary tests
to determine both a suitable force constant and a pulling
velocity. In a work of Jensen et al. on the permeation of
glycerol through aquaglyceroporin GlpF41 the SMD tech-
nique was intensively used to compute the energetics, and
the influence of its parameters on the final result was also
revised with details.

Following that suggested scheme, a harmonic constraint
with a spring constantk ) 1673.6 kJ/mol nm2 (4 kcal/mol
Å-2) was attached to the selected reaction coordinate. This
latter constant ensures a thermal fluctuation of the constrained
coordinate of aboutxkBT/k ) 0.04 nm and a corresponding
force fluctuation of approximately 100 pN. We determined
that a pulling velocityV ) 1‚10-3 nm/ps is slow enough to
guarantee that the system always evolves through intermedi-
ate quasi-equilibrium states. This was further confirmed by
performing reverse transitions at a double steering velocity
and by observing that they converge to the same value of
the free-energy barrier (see also Figure 3).

A preliminary run keeping the perturbing potential fixed
was performed. The first 150 ps were discarded, then system
configurations were saved every 50 ps, as input starting
configuration for subsequent productive runs. The 50 ps
interval ensures that saved configurations are uncorrelated.
Each productive run lasted 500 ps, and the reaction coordi-
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nate was saved at each time step, for a total simulation time
of 4.5 ns and 4 million sampled points. The PMF profile
was reconstructed by means of eq 8 adapting the weighted
histogram method21 with 250 bins combining eight uncor-
related trajectories together. That proved to be enough for
convergence. The statistical uncertainty on the PMF was also
investigated by averaging 7 blocks of 8 trajectories, thus
obtaining an error of(2 kBT (5 kJ/mol) on the energy scale
and(0.05 nm for the position of the minimum.

MetaD simulations were performed by means of two
reaction coordinates, namely the positions of two ions in the
filter-cavity region along the channel axis. We adopted the
following protocol for the simulations: 2 kJ/mol-high hills
were added every 4 ps, and the scale factor of reaction
coordinates was set in order not to exceed the thermal
fluctuations of the two coordinates in absence of any bias.
Values of 0.02 and 0.015 nm looked appropriate for the ion
in the cavity and the ions inside the filter, respectively. The
latter value is less than the former due to their reduced
mobility, as also stated in ref 14. A previous metadynamics
study on the motion of ions inside chloride channels13 guided
this choice and actually ensures that the error on the
reconstructed PMF is of the order of 2kBT (5 kJ/mol). The
overall MetaD simulation lasted approximately 9 ns.

3. Results and Discussion
MD free-energy results usually depend both on the adopted
biasing methodology and on the particular force field used
in the simulations. An exhaustive comparison of different
force-field models applied to gramicidin A as a test case
can be found in the recent literature.2

The focus of our calculations is on the comparison among
the three different biasing techniques illustrated in section 2
with the use of the GROMOS87 force field. It was recently
proved that GROMOSnn force fields introduce a systematic
overestimation of the energy barriers,2 due to the peculiar
set of electric charges included in their parametrization of
the electrostatic interaction. This evidence, however, does

not affect the validity of our conclusions because it equally
influences all of the results under comparison. The obtained
energy profiles fairly agree with those reported in the
literature.10

Furthermore, we point out that energy values are given
usingkBT units. This choice is convenient since the results
are used within the framework of the reaction-rate theory,
with the purpose of studying conduction properties.5

3.1. US vs SMD. PMFs from US and SMD for transition
(S2, S4, Scav) f (S1, S3, Scav) are reported in Figures 2 and
3a, respectively.

For comparison purposes, the curves within each figure
corresponding to different reaction coordinates have been
shifted using the free-energy relative maximum as the pivotal
point for both x- and y-axes. Spatial differences in the
position of minima and maxima obtained with US and SMD
are limited within 0.1 nm or less, and they are attributed
both to rigid shifts of the filter structure with respect to the
internal reference during the simulation, and to thermal
fluctuations. They do not affect either the PMF determination
or the comparison between the two methods. Data are shown

Figure 2. PMFs from US for the transition (S2, S4, Scav) T

(S1, S3, Scav). Solid, dashed, and dash-dotted lines refer to
different reaction coordinates (see framed labels); abscissas
have been shifted in order to allow direct comparison of the
results. The maximum has been used as the pivotal point;
the zero-level of the free energy is at arbitrary position. The
two insets represent the configurations corresponding to the
two minima.

Figure 3. (a) (top) PMFs from SMD for the transition (S2, S4,
Scav) f (S1, S3, Scav). Solid, dashed, and dash-dotted lines
refer to different reaction coordinates (see framed labels);
abscissas have been shifted in order to allow direct compari-
son of the results. The maximum has been used as the pivotal
point; the zero-level of the free energy is at arbitrary position.
The two insets represent the filter configurations correspond-
ing to the two minima. (b) (bottom) PMF for the reverse
transition (see text).

178 J. Chem. Theory Comput., Vol. 4, No. 1, 2008 Piccinini et al.



in the range 2.1-2.65 nm for US and 2.1-2.6 nm for SMD
to include the abscissas corresponding to the initial and final
configurations. The free-energy zero-level is at an arbitrary
position in the two cases presented, which again does not
influence the evolution of the energy difference separating
the configurations.

Two minima are found, as expected, since the two
corresponding configurations (S2, S4, Scav) and (S1, S3, Scav)
of Figure 1 have been already identified as stable configura-
tions of the selectivity filter.10,11,42All of the curves obtained
are qualitatively similar, even though it should be remarked
that the minimum of the final state in the US calculation is
deeper than the one found with SMD. In this latter case, the
second minimum is approximately as deep as the starting
point.

In both plots two of the three curves (Kcom andK2 in US,
K2 and K4 in SMD) are quite similar in shape and in
numerical values, with differences less than 1kBT that can
be easily associated with the statistical variance; nonetheless,
the third curves (K4 in US and Kcom in SMD), though
confirming a similar overall shape, present significantly
different numerical values.

These differences are not related to computational uncer-
tainties but instead to spatial fluctuations attributed to
variations of the ion position within the cavity and to torsions
of the residues facing the selectivity filter, as already
observed in the past.12 These changes, which take place on
the time scale of our MD simulations, give origin to
variations of the energy barriers larger than the computational
uncertainty of MD but still small with respect to barriers
separating conducting from nonconducting states. For this
reason we have considered the previous results as a more
likely estimate of the barrier height provided by the two
techniques considered in this paragraph.

The interpretation of the results coming from the applica-
tion of the SMD technique requires some care. With
reference to Figure 3a, the method provides a reliable
estimate of the energy barrier associated with the transition
out of the minimum of the PMF, which is the starting point
of the pulled atoms. After barrier crossing the initial spring
length is not fully recovered, i.e., some elongation is still
present. This fact produces an artificial overestimate of the
energy level associated with the final state of the pulled
transition. To get a correct estimate, the reverse transition,
namely (S1, S3, Scav) f (S2, S4, Scav), has been simulated
starting from an initially fully relaxed spring and pulling the
ion K3 toward siteS4. The results of this simulation, reported
in Figure 3b, compare with the curve labeledK4 in Figure
3a. Here the overestimate due to the pulling action of the
spring does not allow a correct sampling of the minimum
located at 2.07 nm. By analyzing the two results together
we can conclude that, within the numerical uncertainty
associated with the SMD method, the energy barriers
associated with forward and reverse transitions result in being
equal, in contrast to what is observed with US. From the
US runs we obtain an estimate of the barrier of about 3kBT
for the forward transition and of about 6kBT for the reverse
transition (except curveK4, where a 9kBT barrier is found),
which means a deeper second minimum.

The comparison of the above results with those obtained
with MetaD helps to justify this discrepancy.

Some enhancements may occur, and a more precise PMF
profile can be achieved by means of the Crooks equation.
However for the present case the error affecting SMD
calculations is fair enough to let us infer that the strong
qualitative difference existing among these profiles and those
obtained by US and MetaD can only be attributed to the
different number of sampled coordinates. The main disad-
vantage of SMD over US and MetaD is thus represented by
the intrinsic one-dimensional behavior of eq 7 that leads to
a unique coordinate analysis. When a multiplicity of coor-
dinates is required, as the present case looks like, the SMD
picture is clearly too poor.

3.2. MetaD vs US. MetaD results for the energy landscape
involved in the transition (S2, S4, Scav) f (S1, S3, Scav) are
reported in Figure 4 as functions of the position of ionK4

and of ionKcav. A 3 kBT barrier is estimated by all of the
selected techniques, and the general trend of a deeper
minimum for the (S1, S3, Scav) configuration, as obtained from
US, is also confirmed. It is worth noticing that the two
minima do not correspond to the same position of the ion in
the cavity: when the latter moves closer to the near vacant
site inside the selectivity filter the free-energy surface shows
a deeper minimum.

To better link the results obtained with the three different
methods we can analyze the trajectories followed by the
moving ions in US and SMD runs and the time needed to
observe the transition. Values reported in Figure 4 (and in
Figure 6) must be interpreted as the time-averaged position
of the K4 andKcav ions within US windows (K4 trajectory)
and as snapshots of a representative run in the SMD case.
The standard deviation of ion positions range from 0.013 to
0.021 nm forK4 and from 0.04 to 0.13 nm forKcav as US is

Figure 4. PMF from MtD for the transition (S2, S4, Scav) T

(S1, S3, Scav); each color level corresponds to an energy of 1
kBT. The full line represents the minimum-energy path within
MetaD; the dots and the diamonds are snapshots taken from
trajectories followed by the curvilinear coordinate in US and
SMD runs, respectively. The dotted and dashed lines are
drawn to guide the eye and not as real paths. The two insets
illustrate the position of the ions in the selectivity filter
corresponding to the two main minima.
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concerned and approximately 0.05 nm (K4) and 0.1 nm (Kcav)
in the case of SMD. At the beginning, the ions reside in
their original positions, which correspond to the first
minimum in the energy plot; then, as we start pulling one of
the ions in the selectivity filter with SMD, their energy is
increased, and finally the barrier is crossed. Meanwhile, the
ion in the cavity cannot rise up to the neighboring site in
the selectivity filter until the transition takes place, and it is
observed to strongly oscillate within the cavity. The con-
figurations with the ion in the cavity and the ion close to
site S4 are in fact almost isoenergetic (Figure 4). After the
transition, some time is needed for the ion in the cavity to
stabilize and enter the selectivity filter; this, in turn, lets the

system evolve toward its new free-energy minimum. The
full translocation sequence can, in principle, be observed with
US, but not with SMD, since the continuous pulling action
in practice does not allow the system to reach the final
equilibrium. A similar explanation can also be given for the
deeper minimum of curveK4 of US analysis (Figure 2): both
curves labeledKcom andK2 correspond to simulations where
the ion in the cavity is not substantially moving. According
to this interpretation, the role of ionK4 is crucial for the
conduction process, because it influences directly the position
of the other ions in the cavity and in the selectivity filter.

To further confirm the hypothesis above, we have also
investigated the transition (S1, S3, Scav) f (S0, S2, S4) with
US and MetaD. SMD was not used any longer because it
proved not to be able to correctly identify the position of
the minimum corresponding to the (S1, S3, Scav) configuration
in the previous analyzed transition. For the situation at hand,
it must be remarked that, if the selectivity filter is not
populated by two ions, the protein undergoes a significant
conformational change leading to a nonconductive state.9 For
this reason we always have to consider reaction coordinates
directly or indirectly involving the intermediate ion in the
filter. If we used the outermost ion position as the only
reaction coordinate, we would have run the risk of emptying
the selectivity filter and, thus, driving the system to a
nonconductive state. On the other hand, the ion in the cavity
can only fill site S4: in the final configuration of the previous
analyzed transition this ion resided quite close to the filter’s
mouth. Figures 5 and 6 show the results for US and MetaD,
respectively. A general agreement from both a qualitative
and a quantitative point of view is found between the two
techniques: the path followed with 1-D US coordinate is
the minimum energy path also identified within the MetaD
framework, and the exit barriers do not differ very much
from each other (10-12 kBT for US, approximately 13kBT
for MetaD). The MetaD analysis reveals two minima
corresponding to transition (S3 f S2), depending on the final
position of the ion originally in the cavity, which can either
reside close to or fully enter siteS4. The most stable one is
represented by the latter case, since it corresponds to a deeper
minimum. The minimum-energy path calculated with the
NEB method and reported in Figure 6 shows that the
transition happens when the ion in the cavity enters site S4

and not when it is adjacent to it, even if this corresponds to
a slightly higher barrier. This interpretation is further
confirmed by the fact that in the transition (S1, S3, Scav) f
(S0, S2, S4) potassium ions can occupy two adjacent sites for
short periods of time, breaking the rule of concerted motion.
In particular this sequence of events, reported in Figure 7,
takes place: the ion originally located inScav enters the site
S4, beingS3 filled; then, the water molecule inS2 exchanges
its position with the ion in S3, leading to (S1, S2, S4)
configuration. The latter configuration is quite unstable (top
of the barrier) and evolves to (S0, S2, S4), which represents
the final state of this transition. These intermediate three-
ion states, in which potassium ions occupy two adjacent
binding sites, have already been reported in the literature,3

and they have recently been observed also in the analysis of
the permeation paths of homologous channel Kv1.2.43

Figure 5. PMFs from US for the transition (S1, S3, Scav) T

(S0, S2, S4). Solid and dash-dotted lines refer to different
reaction coordinates (see framed labels); abscissas have been
shifted in order to allow direct comparison of the results. The
maximum has been used as the pivotal point; the zero-level
of the free energy is at arbitrary position. The two insets
represent the configurations corresponding to the two minima.

Figure 6. PMF from MtD for the transition (S1, S3, Scav) T

(S0, S2, S4); each color level corresponds to an energy of 1
kBT. The full line represents the minimum-energy path within
MetaD; the dots are snapshots taken from trajectories followed
by the curvilinear coordinate in US (the dashed lines are
drawn only to guide the eyes and do not correspond to a
physical path). Line A-A represents a wall separating the two
regions, the saddle point in that position is due to an
unavoidable artifact of the interpolation surface. The two insets
illustrate the configurations corresponding to the two minima.
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Furthermore, we did not observe a substantial rearrangement
of the selectivity filter in connection with the water-
potassium exchange between two subsequent simulation
snapshots (10 ps); however, we cannot exclude that this may
take place on a shorter time scale. The overall PMF
calculated via MetaD and projected onto the minimum-
energy path is reported in Figure 8.

When the (S0, S2, S4) configuration is reached, we have
observed a symmetry breaking, also reported in a previous
work by Bernèche and Roux.44 As it is shown in Figure 7e,
the amide plane Val76-Gly77 undergoes a 180° reorientation,
while the backbone carbonyl oxygen of Val76 points away
from the conduction path. As a consequence the water
molecule in site S3 forms a hydrogen bond with the hydrogen
of Gly77. At the same time the plane of the aromatic ring
of Tyr78 bends down, getting closer to the reoriented
carbonyl oxygen of Val76, but it keeps its own specific
mobility preserved.

In conclusion, both MetaD and US allow the easy use of
many reaction coordinates, even though with different

sampling strategies: MetaD performs a simultaneous sam-
pling of the whole set of reaction coordinates, while within
the US framework only one coordinate is varied at a time,
the others being temporarily kept fixed as parameters. As a
consequence, MetaD is less resource-demanding than US and
provides results faster. In our case the 2D plot obtained with
MetaD in Figures 4 and 6 would have required up to ten
times the simulation time used, if calculated using US.

US, however, provides a more accurate sampling than
MetaD when the same set of coordinates is considered, in
particular when the PMF exhibits many competing pathways
in the explored area. In our case, for example, Figure 6 can
be compared with Figure 2 on the left in the reference work
by Bernèche and Roux.10 A general qualitative (and, to a
less extent, even quantitative) agreement between the two
PMFs is found, but some differences exist. The free-energy
path explored by MetaD corresponds to the major path found
by US, but the secondary path identified by US has not been
mapped by MetaD. This secondary path can be associated
with either a slightly higher energy or slow modes not
sampled by the chosen set of reaction coordinates. It should
be noticed, however, that the region corresponding to the
(S0, S2, Scav) configuration is visited after that (S0, S2, S4) is
reached, thus warning about the possible existence of a
competing path. The saddle point linking (S1, S3, Scav) to (S0,
S2, Scav) is an artifact of the interpolating surface, as the NEB
analysis testifies. Last, it must also be pointed out that the
(S1, S3, S4) configuration corresponds to an intermediate state
along the transition path close to the energy maximum. The
associated secondary minimum reported in the reference
work by Bernèche and Roux is not revealed by the MetaD
simulation.

Both techniques seem to be successful and accurate enough
(within their own constraints and limitations) to describe the
permeation process of an ion in a narrow pore. A statement
about which of the two outperforms the other strictly depends
also on the system under investigation, and, for this reason,
the choice of MetaD instead of US (or vice versa) must be
done after a careful evaluation of the trade-off level between
computational efficiency and sampling accuracy.

Figure 7. Trajectories of the potassium ions (green, red, and
black lines) and of the water molecule (blue line) in the
selectivity filter, projected onto the symmetry axis of the
channel, during transition (S1, S3, Scav) f (S0, S2, S4) (a) and
significant MD snapshots of this transition (b)-(e). For clarity
purposes, only two subunits are represented. The positions
of the binding sites are represented by dotted lines. Data are
recorded every 3 ps. At around 450 ps the water molecule
and the ion initially in S3 exchange their position within the
imposed time step: snapshots (c) and (d) suggest that the
water molecule first moves off-axis close to the backbone,
facilitating the ion to rise up into site S2, and then slips down
into its final position. A fast flip of a carbonyl oxygen of Val76,
separating sites S2 and S3, is also possible on a shorter time
scale. A similar reorientation is reported also in snapshot (e),
when a hydrogen bond between the carbonyl oxygen of Val76
and the protein backbone behind it (not represented in the
figure) is established.

Figure 8. MetaD PMF projected onto the minimum-energy
path by means of the NEB method. Data are presented as a
function of a curvilinear coordinate, and labels are used to
identify corresponding points in the free-energy landscape.
In the inset the whole PMF landscape and trajectory are also
reported.
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4. Conclusion
A compared analysis of three different numerical techniques
(Umbrella Sampling, Steered Molecular Dynamics, and
Metadynamics) aimed at the reconstruction of the free-energy
landscape via molecular dynamics has been presented. As a
case study, two key transitions of the permeation process in
the KcsA channel have been chosen.

The obtained results suggest few conclusive statements,
which can be considered general and applicable also to other
permeation cases in nanometric pores.

All of the three techniques represent computational tools
able to reconstruct the PMF profile composed by a number
of valleys and hills of different height. From a qualitative
point of view the identification of the minimum energy path
connecting two consecutive valleys, i.e., finding the lower
barrier existing between two ion occupancy configurations,
is a straightforward activity that can be performed with an
average error of fewkBT. Barriers giving origin to an
effective permeation path must, in fact, be smaller than the
ones existing among configurations not involved in the
conduction. However, the statistical errors allow only ap-
proximate quantitative estimate of transport properties, such
as, for instance, the ionic current. One more critical point is
represented by the choice of the modeling force field that
can introduce a further systematic source of uncertainty.

With regards to the three selected techniques, SMD proved
to be the less suitable one. In fact, this technique was
originally developed for studying the stretching and/or
unfolding of proteins and, then, adapted to investigate free-
energy landscapes. This technique provided poor results for
the present case: when the PMF cannot be described by
means of a unique physical reaction coordinate, SMD may
be inaccurate because the continuous pulling of the reaction
coordinate prevents the other coordinates from reaching
values leading to the global energy minimum.

The US technique is the straightforward, most used, and
most accurate technique for this kind of analyses. However
it demands intensive computational efforts when many
coordinates are used. MetaD is faster in achieving results,
once an appropriate set of reaction coordinates is chosen.
Moreover, it also allows the use of nonintuitive reaction
coordinates not directly related to the spatial coordinates of
the permeating ions (e.g., ion hydration). For this reason it
can be preferred as computationally advantageous. With
respect to US, MetaD tends to drive the simulation through
the main paths of the free-energy profile, whereas US
provides a description of the whole landscapes, investigating
also secondary pathways that could be accessed via MetaD
only by increasing the number of variables and, consequently,
the computational burden. Furthermore, MetaD provides an
upper limit to barriers, because it may happen that some slow
modes are not explicitly taken into account. On the other
hand, US provides a lower limit, due to the fact that the
transition state itself is always considered an equilibrium
distribution by the computational procedure. The combined
use of MetaD and US, the former being able to scope out
the dominant reaction coordinates and the latter to refine
results, represents a good suggestion to achieve accurate
results with an affordable computational cost.
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Abstract: A number of lower organisms (bacteria, fungi, and parasites) produce glycoconjugates

that contain furanose rings. Of particular interest to our group are cell wall polysaccharides

from mycobacteria, including the human pathogen, Mycobacterium tuberculosis, which contain

a large number of arabinofuranose resides. As part of a larger project on the conformational

analysis of these molecules, we report here molecular dynamics simulations on methyl R-D-

arabinofuranoside (1) using the AMBER force field and the GLYCAM carbohydrate parameter

set. We initially studied the ability of this method to predict rotamer populations about the

hydroxymethyl group (C4-C5) bond. Importantly, we show that simulation times of up to 200

ns are required in order to obtain convergence of the rotamer populations for this ring system.

We also propose a new charge derivation approach that accounts for the flexibility of the

furanoside ring by taking an average of the charges from a large number of conformers across

the psuedorotational itinerary. The approach yields rotamer populations that are in good

agreement with available NMR data and, in addition, provides insight into the nature of the

puckering angle and amplitude in 1.

Introduction
Furanose rings are important components of a number of
glycoconjugates, with the most well-known examples being
the nucleic acids, which contain eitherD-ribofuranose or
2-deoxy-D-erthyro-pentofuranose (2-deoxy-D-ribose).1 It is
less widely appreciated that a number of bacteria, fungi, and
parasites also biosynthesize furanoside-containing polysac-
charides.2,3 Glycans composed of furanosyl moieties are
typically found on the surfaces of the organisms that produce
them, and thus they play important roles in the interaction

of these species with their environment. Furanosyl residues
are also key components of natural products other than
polysaccharides, including plant opines,4 glycopeptides,5 and
the aminoglycoside antibiotics.6

Among the most elaborate examples of these glycocon-
jugates are two polysaccharides, arabinogalactan (AG) and
lipoarabinomannan (LAM), that are found in the cell wall
of mycobacteria.7 Notable among these are the pathogenic
organismsMycobacterium tuberculosis, M. leprae, andM.
aVium, which, respectively, cause tuberculosis, leprosy, and
a tuberculosis-like disease common in HIV-positive indi-
viduals. The AG, a polysaccharide containing approximately
100 monosaccharide units, is composed entirely of arabino-
furanose and galactofuranose residues, except for two
pyranose moieties, which serve as the linker between the
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glycan and peptidoglycan.8 Similarly, a significant compo-
nent of LAM is an arabinan domain, representing ap-
proximately half the molecular weight, which contains only
arabinofuranose residues.9

The AG is esterified at its nonreducing end with mycolic
acids, C70-C90 branched lipids, yielding a glycolipid named
the mycolyl-arabinogalactan (mAG) complex, which is the
major structural component of the cell wall. In the accepted
model for the macrostructure of the mycobacterial cell wall,10

the mycolic acids pack perpendicular to the plasma mem-
brane thus forming a lipid layer at the periphery of the
assembly. This layer of tightly packed mycolic acids serves
as a major permeability barrier to the passage antibiotics.
Thus, the AG serves as a scaffold by which the organism
attaches an additional permeability barrier to peptidoglycan
and, in turn, the plasma membrane.

The essentially exclusive presence of furanosyl rings in
the AG is curious as they are of higher energy than their
pyranose counterparts.11 It has been hypothesized12 that the
AG is composed of furanose residues because the resulting
glycan has greater flexibility relative to a pyranose-containing
species. A more malleable scaffold would be expected to
facilitate optimal packing of the mycolic acids, which in turn
would provide the organism with great protection against
its environment. This “flexible-scaffold hypothesis” is plau-
sible considering that while pyranose rings typically adopt
single well-defined chair conformations, furanose rings can
exist in a variety of twist and envelope conformations that
are separated by typically low-energy barriers. Therefore, a
polysaccharide composed of furanose residues would be
more flexible than one made of pyranose residues. Although
intriguing, there are scant data to support the flexible scaffold
hypothesis. As part of a program dedicated to understanding
the conformation of mycobacterial AG (and LAM), we have
carried out a series of NMR studies on the arabinofuranose-
containing oligosaccharides13,14 and coupled these experi-
mental studies with high-level ab initio and density functional
theory calculations on methylR-D-arabinofuranoside (1,
Figure 1)15,16 and related analogs.17-20

Given their inherent flexibility, the conformational analysis
of furanosides is more complicated than comparable studies
with pyranosides as more than one ring conformer must be
considered. For a given furanoside, the ten unique envelope
(E) and twist (T) forms can be identified on the pseudoro-
tational wheel (Figure 2), each with a unique psuedorotational
phase angle,P.21 In solution, there is a dynamic equilibrium
between ring conformers, usually dominated by two major
species between which the interconversion barrier is low
(typically <5 kcal/mol).17 One of these conformers is
generally found in the northern hemisphere of the pseudoro-
tational wheel, and the other in the southern hemisphere,21

which are termed the North and South conformers, respec-
tively. Conformational investigations of furanoside rings by
NMR spectroscopy most commonly involve analysis using
PSEUROT,22 a program that assumes this two-state equi-
librium and which fits the experimental1H-1H coupling
constant data to two conformers and their populations.

Other key conformational features of importance include
rotamer populations about the glycosidic C1-O1 and
C4-C5 bonds. The preferred rotamer about the C1-O1 bond
is the one in which the aglycone (e.g., the methyl group in
1) is orientedanti with respect to the C1-C2 bond, as this
is favored by theexo-anomeric effect.23 For the C4-C5 bond
(ω angle), three rotamers are typically present,gt, tg, and
gg (Figure 3), with the distribution being influenced by a
combination of steric and stereoelectronic (gauche) effects.24-27

Having studied the conformation of1 using both experi-
mental and high-level computational methods, we are
interested in looking at larger oligomers ofD-arabinofuranose,
for which we have NMR data.13,14 However, given the size
of these molecules, their treatment with ab initio or density
functional theory methods is of limited practicality. Thus,
we have begun to investigate the use of force field models
to probe the conformation of these oligosaccharides. Previous
molecular mechanics studies of furanosyl rings have largely
been carried out using MM3 or earlier variants of this force
field.28-34 However, over the past several years the use of
the AMBER35 force field in conjunction with the GLY-
CAM36,37parameter set has emerged as a reliable force field
for molecular mechanics studies of oligosaccharides contain-
ing pyranose rings. In this paper, we describe the results of
our first investigations of the use of the GLYCAM param-
eters and the AMBER force field to study the conformation
of furanoside rings. More specifically, we report the ability
of this computational method to predict the rotamer distribu-
tion about the C4-C5 bond and pseudorotational phase angle
in 1 as determined by NMR spectroscopy. In this regard,

Figure 1. Structure of methyl R-D-arabinofuranoside.

Figure 2. Pseudorotational itinerary for a D-aldofuranose ring.

Figure 3. Definition of gg, gt, and tg rotamers about the
C4-C5 bond.
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these studies are similar to recent work by Woods and
Kirschner38 in which a similar analysis of hydroxymethyl
groups on pyranoside rings was carried out. The notable
differences here are that ring conformation is addressed and
a new charge calculation procedure had to be implemented
to take into account the flexibility of the furanoside ring.

Methods
Simulations.We adopted the combined AMBER/GLYCAM
force field for the simulations of1. All the MD simulations
were carried out using the AMBER 9.035 suite of programs,
and the electronic structure calculations were performed with
Gaussian 03.39

Solution Simulations.A 200 ns MD simulation of1 was
performed in a box of 298 TIP3P40 water molecules under
NPT conditions. The total box size was (25.569× 25.372
× 25.544) (Å). The temperature was set to 300 K and the
pressure to 1 atm. A cutoff of 8 Å was set for nonbonded
interactions. The SCNB and SCEE scaling parameters were
both set to 1.0 in accordance with the GLYCAM approach.
All simulations were carried out under NPT conditions, and
the SHAKE41 algorithm was used to constrain all hydrogen-
containing bonds. Prior to production MD simulations,
minimization of the waters was first performed, followed
by minimization of the whole system, 100 ps of annealing
and 150 ps of equilibration. Ewald summation was used to
handle long-range electrostatics.

Gas-Phase Simulations.The temperature was set to 300
K. A cutoff of 18 Å was set for nonbonded interactions. The
SCNB and SCEE scaling parameters were both set to 1.0 in
accordance with the GLYCAM approach. The SHAKE41

algorithm was used to constrain all hydrogen-containing
bonds.

Atomic Charges.Two charge derivation procedures were
considered. The first one is the ensemble average approach
proposed by Woods and workers42 and is referred to as the
usual GLYCAM procedure. Following this procedure, crys-
tallographic data43 were employed for the input geometry
of methylR-D-arabinofuranoside, and an ab initio geometry

optimization was then performed at the HF/6-31G* level of
theory. Based on the HF/6-31G* single point, the RESP44

approach was used to obtain an initial set of restrained partial
atomic charges. A relatively short MD simulation (10 ns)
based on these charges and 100 conformations were selected
from the resulting trajectory. The dihedral angles of the
rotatable exocyclic moieties, such as hydroxyl groups, were
then determined from the 100 snapshots and transferred to
the quantum mechanics optimized geometry. Single point
HF/6-31G* calculations were performed for these 100 new
conformations. Partial atomic charges were obtained using
the RESP approach for the 100 conformations, and the final
charge of each atom was obtained as an average. The value
of the RESP restraint weight was set to 0.01, and fitting was
performed on all of the atoms except the aliphatic hydrogen.45

The second charge derivation procedure is an important result
of the current report and is described in the following section.

Results and Discussion
Atomic Charges.We present in Table 1 the atomic charges
obtained from the standard GLYCAM procedure for five
different ring conformers of1, labeled A-E. It is clear from
this data that the charges vary when one changes the ring
conformation. While this variation is not large for all atoms,
the effect is especially pronounced for atoms C3, C4, and
C5. For example, for C3 the charges vary over the range
0.20-0.42. This variability will negatively impact the
accuracy of the simulations, and, to remove the bias
associated with the choice of a specific ring conformation,
we developed a charge averaging procedure that accounts
for the various furanoside ring conformations.

Ring-Averaged Charges.Our modification of the usual
GLYCAM approach, which incorporates the effects of
the ring flexibility, is now described. Two hundred confor-
mations were selected from a 50 ns simulation, and a con-
strained ab initio geometry optimization (HF/6-31G*) was
performed for each. During those constrained optimizations,
the dihedral angles involving hydroxyl protons were held to
the values obtained from the MD simulation. For each of

Table 1. Partial Atomic Charges of 1 Obtained Using the Usual GLYCAM Procedure for Five Reference Rings (A-E) and
Using the Averaged Approach Described Herea,b

atom A B C D E ring averagedc

P ) 13 P ) 13 P ) 32 P ) 139 P ) 58 P* ) 31
φm ) 34 φm ) 41 φm ) 40 φm ) 35 φm ) 40 φm* ) 35
C1 0.38 (0.05) 0.37 (0.06) 0.38 (0.05) 0.37 (0.04) 0.38 (0.05) 0.38 (0.04)
C2 0.35 (0.09) 0.33 (0.09) 0.30 (0.07) 0.31 (0.05) 0.28 (0.09) 0.31 (0.07)
O2 -0.72 (0.02) -0.73 (0.02) -0.69 (0.02) -0.70 (0.02) -0.70 (0.03) -0.69 (0.02)
OH2 0.42 (0.01) 0.43 (0.02) 0.42 (0.01) 0.43 (0.02) 0.42 (0.02) 0.42 (0.01)
C3 0.34 (0.1) 0.42 (0.09) 0.24 (0.09) 0.20 (0.08) 0.39 (0.10) 0.30 (0.12)
O3 -0.73 (0.03) -0.76 (0.04) -0.71 (0.03) -0.73 (0.03) -0.74 (0.02) -0.72 (0.03)
OH3 0.43 (0.01) 0.43 (0.02) 0.43 (0.02) 0.44 (0.03) 0.43 (0.02) 0.43 (0.02)
C4 0.19 (0.05) 0.12 (0.05) 0.33 (0.1) 0.40 (0.1) 0.18 (0.05) 0.26 (0.11)
O4 -0.49 (0.04) -0.47 (0.04) -0.49 (0.05) -0.46 (0.04) -0.45 (0.04) -0.47 (0.05)
C5 0.32 (0.03) 0.31 (0.04) 0.22 (0.05) 0.20 (0.05) 0.28 (0.04) 0.24 (0.04)
O5 -0.72 (0.03) -0.67 (0.02) -0.67 (0.02) -0.69 (0.03) -0.70 (0.02) -0.67 (0.03)
OH5 0.42 (0.03) 0.41 (0.02) 0.42 (0.02) 0.43 (0.03) 0.42 (0.02) 0.42 (0.02)
a Partial atomic charges for the ring-averaged procedure are shown in the last column; numbers in parentheses correspond to standard

deviations. b Puckering angles, P, and amplitudes, φm, are calculated according to the Altona-Sundaralingam method.21 c For the ring-averaged
results, P* and φm* indicate the most probable values based on the distribution shown in Figure 6.
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the 200 new conformations, single point HF/6-31G* calcula-
tions were performed for the RESP fit. Note that the ring
geometry and the dihedral angles involving hydroxyl protons
are different in each of the 200 geometries. The same RESP
approach as the one used in the usual GLYCAM procedure
was then followed to obtain partial atomic charges.

The charges obtained from our new procedure, where
charges are ensemble averaged over several exocyclic
torsionsand ring conformations, are presented in Table 1.
We note that the new charges differ from those of the
standard GLYCAM approach most notably for carbon atoms
C3, C4, and C5. An average rmsd of the carbon atoms of
the ring based on the 200 conformations used in the ring
averaging was calculated, and a value of 0.09 with a
fluctuation of 0.08 was obtained. This parameter is a
convenient measure of the ring flexibility of the system.
Along with the calculation of the rmsd, a correlation study
between rmsd and puckering was carried out to quantify the
magnitude of the rmsd in terms of puckering. In essence,
this correlation study will indicate what change in ring
puckering corresponds to a certain value of rmsd. However,
this correlation study cannot be performed accurately on 200
conformations. It is necessary to consider many more
conformations to get a statistically meaningful estimate.
Therefore, we selected 100 000 conformations from the
simulation based on our new ring-averaged atomic charges,
whose results will be shown and discussed below. Based on
that study, the current average rmsd of 0.09 corresponds to
a change of about 60° in the puckering angle,P.

In the development of our ring average procedure, an
alternate approach was attempted where one freezes not only
the dihedral angles involving hydroxyl protons (as in our
final average ring procedure) but also the dihedral angles of
the ring (essentially fixing the ring puckering) in the
geometry optimization of the 200 conformations selected
from the simulation. In this way, the shape or puckering of
the ring from the MD will be preserved, and our ring average
will be more consistent with the simulation and, therefore,
with the flexibility of the system. However, the geometry
optimization of the 200 conformations with all these
constraints did not converge. The conformations were over
constrained, and all attempts to make them converge failed.
The conformations extracted from the simulation seem to
be very far from the ab initio minimum, and many constraints
render convergence impossible.

Solution Simulations. Having determined the average
atomic charges for1, we next set to establish the length of
simulation required to achieve convergence. As a criteria for
evaluating convergence we used the populations of rotamers
about the C4-C5 bond. Shown in Figure 4 are the results
of a convergence study of these rotamer populations in1 as
a function of simulation time. Charges obtained with the new
ring-averaged procedure were used. From these results, it is
clear that a 200 ns simulation is required to converge the
populations of all the rotamers to reasonable uncertainties
(a few units of percentage). Of particular note, simulations
of less than 50 ns produced rotamer populations differing
substantially from those present after 200 ns.

We next compared the C4-C5 rotamer populations ob-
tained from the simulations with those derived from experi-
mental results.13 A histogram of the behavior of this torsion
is shown in Figure 5. All three rotamers are populated, but
the tg rotamer (180°) is visited infrequently. When the con-
formers from the three peaks in the histogram are integrated,
it is possible to quantitate rotamer populations, which are
presented in Table 2. In addition to the results based on our
ring-averaged charge derivation procedure and the experi-
mental values, the results of simulations based on the five
charge sets of the standard (fixed ring) GLYCAM procedure
are also presented. Clearly, the new ring-averaged charge
calculation procedure leads to a good agreement with
experiment, which is better than the fixed ring method. While
both charge derivation approaches yield the correct ordering

Figure 4. Convergence of the rotamer populations of 1. Lines
are a guide to the eye, and the gg, gt, and tg populations are
given by the top, middle, and bottom lines, respectively.

Figure 5. Time dependence of the C4-C5 torsion angle (left panel) and its associated distribution (right panel) for 1.
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of the rotamer populations, the results based on the usual
GLYCAM approach can sometime lead to a worse agreement
with experiment because of the intrinsic ring bias of that
procedure. These results validate the ring-averaging method
for obtaining charges in these flexible rings, and, encouraged
by these results, we considered other ring parameters in1,
in particularP andφm.

Figure 6 contains the variation inP, which describes ring
puckering; the inset shows the variation in puckering
amplitude,φm. The distribution inφm is centered about 35°,
which corresponds well to earlier ab initio, density functional
theory, and molecular calculations15-19 on 1 as well as to
the puckering amplitude of this molecule in the crystal
structure.43 With regard toP, conformations with values in
the northern hemisphere of the pseudorotational itinerary
(Figure 2) are clearly favored although a small fraction of
the conformers are also present in the southern hemisphere.
The area of conformational space centered aboutP ) 45°
corresponds well to the N conformer determined for114 using
the PSEUROT22 procedure, which identified two conform-
ers: a N conformer atP ) 44° (39%) and an S conformer
atP ) 123° (61%). However, while there is good agreement
with the identify of the N conformer, the conformer
populations obtained from the simulation do not correspond
well with experiment nor with previous ab initio and density
functional theory calculations on1.15-19 Indeed, the distribu-
tion shown in Figure 7 suggests that a while a small
population of the S conformer (centered aroundP ) 180) is
present, the equilibrium is heavily biased to the N conformer.
These results suggest that the two-state model inherent in
the PSEUROT approach may not be valid for1.

Figure 7 illustrates the correlation study mentioned earlier
where we calculate the joint probability distribution of the
puckering angle,P, and the rmsd of the ring atoms. The
graph shows that a change of 180° in ring puckering, which
is the maximum possible, represents a variation of ap-
proximately 0.25 in rmsd. The figure also reveals that an
rmsd value of 0.09 as obtained in the ring-averaged charge
derivation procedure of the preceding section corresponds
to a 60° change in the puckering angle,P. If the fluctuation
magnitude of 0.08 is taken into account, the change in ring
puckering will be more than 100°. Obviously, this result lends
weight to our modification to the standard GLYCAM
procedure to derive the set of atomic charges. The current
solvated molecular system is very flexible, and the charge
derivation cannot be based on only one ring but has to be
based on an average over numerous rings to represent all
the conformations accessible to the system.

Gas-Phase Simulations.Although we anticipated that the
inclusion of explicit water molecules to simulate solvent
effects would be essential to obtain results consistent with
experiment, as a test of this we performed a simulation of1
in the gas phase. We present in Figure 8 the analysis of the
C4-C5 torsion angle and, in Figure 9, pseudorotation be-
havior in the gas phase. As expected, these gas-phase results
differ from those obtained with explicit solvent inclusion.
This is presumably due, in large part, to the fact that in the

Figure 6. Time dependence of the Altona-Sundaralingam P angle (left panel) and its associated distribution (right panel) for 1.
The distribution of puckering amplitude, φm, is given in the inset of the right panel (φm* ) 35°).

Table 2. Rotamer Populations of 1 Obtained Using the
Various Approaches

rotamer population (%) gt tg gg

experiment13 38 14 48
ring average charges 37(3) 7(1) 56(3)
fixed ring charges A 29(2) 8(1) 63(3)
fixed ring charges B 29(2) 8(1) 63(3)
fixed ring charges C 39(3) 7(1) 54(3)
fixed ring charges D 33(3) 8(1) 59(3)
fixed ring charges E 27(2) 8(2) 65(3)
gas phase 7(1) 40(3) 53(3)

Figure 7. Joint probability distribution of the puckering angle
(in degrees), P, and the rmsd (in Å) of the ring carbon atoms.
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absence of water, the possibility of intermolecular hydrogen
bond competition with the solvent is no longer possible.

We see from Figure 8 that the ordering of the rotamer
populations is reversed compared to the solution and
experimental cases. The population of thetg rotamer is now
greatly enhanced at the expense of thegt rotamer. Figure 9
in turn reveals that the pseudorotation distribution now shows
more distinct north (N) and south (S) populations. The most
populated values of the two puckering states arePN* ) 38
andPS* ) 165 for the north and south regions, respectively,

which agrees well with previous ab initio and density
functional theory calculations on1.15-19 This result differs
significantly for the simulation done in the presence of water,
where two distinct puckering states did not exist and instead
a single region in the northern hemisphere of the pseudoro-
tational itinerary was favored. As expected, these results
underscore the importance of using an explicit solvent model
to correctly describe solution behavior.

An ab initio and density functional theory study of several
conformers of1 in the gas phase16 showed high correlation

Figure 8. Time dependence of the C4-C5 torsion angle (left panel) and its associated distribution (right panel) for 1 in the gas
phase.

Figure 9. Time dependence of the P angle (left panel) and its associated distribution (right panel) for 1 in the gas phase (PN*
) 38 and PS* ) 165). The distribution of puckering amplitude, φm, is given in the inset of the right panel (φm* ) 38).

Figure 10. Joint probability distribution of the puckering angle, P, and the C4-C5 torsion for 1 in the gas (left panel) and
solution (right panel) phases. The units of the angles P and ω are in degrees.
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between the rotamer and the ring puckering distributions.
In other words, the rotamer population depends on the ring
puckering and vice versa.

Motivated by this study, we carried out a correlation study
between the C4-C5 torsion and the puckering angle. Figure
10 shows the joint probability distribution of the C4-C5
torsion and puckering angle,P, for both gas- and solution-
phase simulations. The gas-phase results reveal the presence
of north and south hemispheres of the pseudorotational
wheel, and different trends of C4-C5 torsion distribution
are obtained for each hemisphere. For example, conforma-
tions with P values between 0 and 50° (North) exhibit the
trend in rotamers oftg > gg> gt, whereas for conformations
with P values around 180° (South), the trend isgg > tg )
gt. The favoring of thegg rotamer in the S conformers would
be expected given the ability of conformers with this C4-
C5 torsion to form transannular hydrogen bonds between
OH2 and OH5. Similarly, in the N conformers, thetg rotamer
is stabilized by hydrogen bonding between OH3 and OH5.
There is therefore a marked correlation between C4-C5
torsion and ring puckering in the gas phase, as concluded
from an earlier ab initio study16 although the trends in
rotamers for the respective values of ring puckering do not
coincide. The ab initio study showsgg > gt > tg for P ≈
30 andgg > tg > gt for P ≈ 180. These differences may
arise from the fact that in the ab initio study a full sampling
of conformational space was not undertaken. Instead the
energy-minimized structures were obtained by full optimiza-
tion of a family of 30 ring-constrained conformers15 that had
been partially optimized to probe the effect of ring confor-
mation on various molecular parameters, e.g., bond lengths
and bond angles. In solution, this strong correlation between
the C4-C5 rotamer and the furanose ring conformation is
not observed. As seen in Figure 10, the north hemisphere of
the pseudorotational wheel is mostly populated, regardless
of the C4-C5 rotamer. We propose that the effect is due to
the lack of intramolecular hydrogen bonding in the solution
simulations.

Conclusions
In this paper, we have shown that the AMBER/GLYCAM
model is applicable to furanoside rings, specifically methyl
R-D-arabinofuranoside,1, provided that precautions are taken
to account for the inherent flexibility of these five-membered
rings. In particular, it is critical to use averaged atomic
charges obtained from a large number of conformations
(200). This approach leads to less charge variability and, in
turn, more reproducible results. The usual GLYCAM pro-
cedure, in which a single ring conformer is used to derive
atomic charges, appears to be valid for the more rigid
pyranoside rings but not the conformationally mobile fura-
nosides. Furthermore, long simulation times (200 ns) are
required for convergence. Simulations in which these ap-
proaches were implemented showed good agreement with
rotamer populations about the C4-C5 bond and the pucker-
ing amplitude of the ring (φm) as determined from NMR
spectroscopic data.17 In contrast, the results of the simulations
in water demonstrated a single low-energy region of con-
formational space thus suggesting that the two-state model

most frequently used to describe furanose ring conforma-
tion17,22may not be valid for1. In the gas-phase simulations,
results consistent with the two-state model and earlier ab
initio and density-functional theory calculations15-19 were
found.

The differences between ring conformer populations in the
gas and aqueous phases are noteworthy and, while not
necessarily unexpected, underscore both the profound influ-
ence of water on these flexible rings as well as the potential
danger of consistently applying the two-state model in the
conformational analysis of furanose moieties. In light of the
present success of this approach to model these flexible rings,
future studies will involve the extension of this method to
the study of other commonly occurring furanoside monosac-
charides (e.g.,â-D-arabinofuranoside andâ-D-galactofura-
noside) as well as more complex oligomeric and polymeric
structures related to mycobacterial arabinogalactan and
lipoarabinomannan. Other issues such as the role of the water
model or polarization will also be explored in forthcoming
work.
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Abstract: The hypothetical scanning molecular dynamics (HSMD) method is a relatively new

technique for calculating the absolute entropy, S, and free energy, F, from a given sample

generated by any simulation procedure. Thus, each sample conformation, i, is reconstructed

by calculating transition probabilities that their product leads to the probability of i, hence to the

entropy. HSMD is an exact method where all interactions are considered, and the only

approximation is due to insufficient sampling. In previous studies HSMD (and HS Monte Carlo

- HSMC) has been applied very successfully to liquid argon, TIP3P water, self-avoiding walks,

and peptides in a R-helix, extended, and hairpin microstates. In this paper HSMD is developed

further as applied to the flexible 7-residue surface loop, 304-310 (Gly-His-Gly-Ala-Gly-Gly-

Ser) of the enzyme porcine pancreatic R-amylase. We are mainly interested in entropy and free

energy differences ∆S ) Sfree - Sbound (and ∆F)Ffree-Fbound) between the free and bound

microstates of the loop, which are obtained from two separate MD samples of these microstates

without the need to carry out thermodynamic integration. As for peptides, we find that relatively

large systematic errors in Sfree and Sbound (and Ffree and Fbound) are cancelled in ∆S (∆F) which

is thus obtained efficiently with high accuracy, i.e., with a statistical error of 0.1-0.2 kcal/mol

(T)300 K) using the AMBER force field and AMBER with the implicit solvation GB/SA. We

provide theoretical arguments in support of this cancellation, discuss in detail the problems

involved in the computational definition of a microstate in conformational space, suggest potential

ways for enhancing efficiency further, and describe the next development where explicit water

will replace implicit solvation.

I. Introduction
I.1. The Role of Free Energy in Structural Biology.The
theoretical/computational treatment of peptides, proteins, and
other biological macromolecules is extremely difficult due
to long-range interactions and their rugged potential energy
surface,E(x) (x is the 3N-dimensional vector of the Cartesian
coordinates of the molecule’sN atoms). More specifically,
this surface is “decorated” by a tremendous number of
localized wells and “wider” ones, defined over regions,Ωm

(called microstates)seach consisting of many localized wells

(an example for a microstate is theR-helical region of a
peptide, see further discussion in sections II.3, II.11, and
II.12). A microstateΩm, which typically constitutes only a
tiny part of the entire conformational spaceΩ, can be
represented by a sample (trajectory) generated by alocal
molecular dynamics (MD)1,2 simulation starting from a
structure that belongs toΩm. MD studies have shown that a
molecule will visit a localized well only for a very short
time [several femtoseconds (fs)] while staying for a much
longer time within a microstate,3,4 meaning that the mi-
crostates are of a greater physical significance than the
localized wells.
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A central aim of computational structural biology is to
identify the most stable microstates, i.e., those with the largest
conformationalpartition functionZm (or equivalently with
the lowest Helmholtz free energy,Fm)

where kB is the Boltzmann constant,T is the absolute
temperature, and the integration is carried out over the limited
microstateΩm, rather than overΩ.(for simplicity, we shall
denote in most cases a microstateΩm by m). Thus, the protein
folding problem is the notoriously difficult task of identifying
the microstate with the global minimumFm, which practically
might be achieved by two challenging stages: (1) identifying
an initial set of microstates with expected high stability (e.g.,
based on an energetic criterion) and (2) calculating their
relative populations,pm/pn ) Zm/Zn [pm ) exp[-Fm/kBT]/Z,
whereZ is the (cancelled out) partition function of the entire
conformational space,Ω], which leads to minimumFm

where∆Fmn ) Fm - Fn.
Calculation of relative populations is also required in

problems which are less challenging than protein folding,
i.e., in cases ofintermediate flexibility, where a flexible
protein segment (e.g., a side chain or a surface loop), a cyclic
peptide, or a ligand bound to an enzyme populates signifi-
cantly several microstates in thermodynamic equilibrium. It
is of interest to know whether the conformational change
adopted by a loop (a side chain, ligand, etc.) upon binding
has been induced by the other protein (induced fit5,6) or
alternatively the free loop already interconverts among
different microstates where one of them is selected upon
binding (selected fit7). This analysis requires calculatingpm

values, which are also needed for a correct analysis of NMR
and X-ray data of flexible macromolecules.8-11 Calculation
of F is essential in many other biological processes. Thus,
F determines the binding affinities of protein-protein
interactions, it is an important factor in enzymatic reactions,
electron transfer, and ion transport through membranes, and
it leads to the solubilities of small molecules.

I.2. The Difficulty in Calculating the Free Energy. It
should first be pointed out that theabsoluteHelmholtz free
energy isFm ) Em - TSm whereSm is the absolute entropy.
Monte Carlo (MC)12 and MD1,2 are dynamic methods, which
enable one to generate samples of system configurations,x
distributed according to their Boltzmann probability density,
FB(x)

(Zm is defined overm or the entire conformational space,
Ω). With both methods it is straightforward to estimate
ensemble averages of quantities that are measured directly
from x, such asE(x). On the other hand, to estimate the
entropy (defined up to an additive constant)

one has to calculate the practically unknownValueof ln FB-
(x) [FB(x) depends not only onx but also on the entire
microstate through Zm, where Zm is extremely difficult to
calculate directly from the sample]. Thus, the difficulty in
calculatingFm stems from the difficulty in calculatingSm.
In most cases, however, one is interested in free energy
differences∆Fmn, which are somewhat easier to obtain than
Fm andFn themselves.13-19

I.3. Calculation of ∆Fmn by the Counting Method and
Thermodynamic Integration. As said above, even calcula-
tion of relative populations is nontrivial. A straightforward
way to estimatepn/pm ) exp- [∆Fmn/kBT] is by acounting
method, i.e., from a long MD or MC simulation that “covers”
both microstates. Thus,∆Fmn ) -kBT ln[(#m)/(#n)], where
#m (#n) is the population, i.e., the number of times the
molecule visited microstatem (n) during the simulation.
However, because of high-energy barriers, the transition
between microstates at room temperature might require long
times, nanoseconds or more even for side-chain rotamers,
meaning that reliable sampling of #m (#n) might become
prohibitive. This problem can be alleviated by applying
enhanced sampling techniques such as replica exchange20

or multicanonical methods;21,22however, the conformational
search capability of these methods is also limited, and
microstates of interest might be visited poorly or will not be
visited at all. The common analysis is based on projecting
MD (MC) trajectories onto a small number of coordinates
using principal component analysis or calculating the popula-
tions along one or two physically significant reaction
coordinates.23,24

Differences,∆Fmn, are commonly calculated by thermo-
dynamic integration (TI) over physical quantities such as the
energy, temperature, and the specific heat25,26 as well as
nonphysical parameters13-19,27-34 (free energy perturbation
methods and umbrella and histogram analysis methods35-37

are also included in this category, see ref 19 and references
cited therein). This is a robust and highly versatile approach,
which is used successfully for calculating the difference in
the free energy of binding of two ligands to the active site
of an enzyme. However, if the structural variance ofm and
n is large, then the integration fromm to n becomes difficult
and in many cases unfeasible. Furthermore, because MC
(MD) simulations constitute models for dynamical processes,
one would seek to calculate changes inF and S during a
relaxation process, by assuming local equilibrium in certain
parts along the trajectory; a classic example is simulation of
protein folding.38 Such information cannot be obtained by
TI, and it is thus desirable to develop methods that estimate
S andF directly from a given trajectory.

I.4. Calculation of the Absolute Entropy. The problems
in calculating∆Fmn mentioned above could be remedied to
a large extent by developing methods for calculating the
absolute Fm from a given sample. This would enable one to
carry out (only) twoseparateMD simulations of microstates
m and n, calculating directly the absoluteFm and Fn and
their difference∆Fmn ) Fm - Fn, where the TI process or
the long runs needed in the counting method are avoided.

A commonly used approach for estimating the absoluteS
is based on the harmonic approximation and was introduced

Fm ) -kBT ln Zm ) -kBT ln ∫m
exp[-E(x)/kBT]dx (1)

pm/pn ) Zm/Zn ) exp- [∆Fmn/kBT] (2)

FB(x) ) exp[-E(x)/kBT]/Zm (3)

Sm ) -kB ∫m
FB(x)lnFB(x)dx (4)
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to biomolecules by Goj and Scheraga.39,40 They obtainedS
) -(kB/2)ln[Det(Hessian)], where Hessian is the matrix of
second derivatives of the force field around an energy
minimized structure; the quantum mechanical version was
applied later for peptides.41 An important development has
been the introduction of the quasi-harmonic (QH) method
by Karplus and Kushick,42 where the Boltzmann probability
density of structures defining a microstate is approximated
by a multivariate Gaussian. Thus,

where the covariance matrix,σ, is obtained from a local MD
(MC) sample, andN is (usually) the number of internal
coordinates. Clearly,SQH constitutes an upper bound forS
since correlations higher than quadratic are neglected; also,
anharmonic contributions are ignored, and QH is not suitable
for diffusive systems such as water. While QH has been used
extensively during the years, a systematic study of its
performance has been carried out only recently by Gilson’s
group43 who have found that the performance of QH
deteriorates significantly in Cartesian coordinates and when
applied to more than one microstate.19

The absoluteF can also be obtained with TI provided that
a reference stateRwith knownFR is available and an efficient
integration pathRfm can be defined. A classic example is
the calculation ofF of liquid argon or water by integrating
the free energy from an ideal gas reference state. However,
for nonhomogeneous systems such integration might not be
trivial, and in models of peptides and proteins defining
adequate reference states is a problem. Differences in free
energy can be obtained by Bennett’s method and techniques
that are derivatives of Bennett’s method (for a more complete
discussion about methods for calculating the absolute entropy
see ref 19).

I.5. Our Methods for Calculating the Absolute S.
Another approach for calculating the absoluteS(F) has been
suggested by Meirovitch and has been implemented in two
approximatetechniques of general applicability (i.e., they
are not restricted to harmonic conditions), the local states
(LS)44-46 and the hypothetical scanning (HS)47-49 methods.
With both methods each conformationi of an MC(MD)
sample isreconstructedstep-by-step (from nothing) using
transition probabilities (TPs), where their product leads to
an approximation for the correct Boltzmann probability (eq
3) from which various free energy functionals (e.g., upper
and lower bounds) can be defined. Recently, the deterministic
approximate calculation of TP(HS) was replaced by a
stochastic calculation carried out by MC(MD) simulations,
whereall interactions are taken into account, and from this
respect the method [called HSMC(D)] can be viewed as
exact;50 the only approximation involved is due to insufficient
MC(MD) sampling. HSMC(D) has unique features: it
provides rigorous lower and upper bounds forF, which
enable one to determine the accuracy from HSMC(D) results
alone without the need to know the correct answer. Further-
more,F can be obtained from a very small sample and even
from any singleconformation. HSMC results, which agree
within error bars with TI results, were obtained for liquid

argon, TIP3P water,50,51 self-avoiding walks on a square
lattice,52 and peptides.53,54 Very recently HSMD has been
extended to peptides with side chains simulated by MD.55

We have found that reliable results fordifferences,∆Smn and
∆Fmn, can be obtained with considerable efficiency,∼100
times faster (in term of computer time) than with MC. These
results obtained for decaglycine and NH2(Val)2(Gly)6-
(Val)2CONH2 are very encouraging, suggesting that HSMD
might become a highly efficient tool for calculating∆Fmn

(our main interest) also for more complex systems such as
loops.

I.6. A Mobile Loop in Porcine Pancreatic R-Amylase.
In this paper we develop HSMD further by applying it to a
flexible surface loop of the enzyme porcine pancreatic
R-amylase (PPA).R-Amylases (R-1,4-glucan-4-glucanohy-
drolases, EC 3.2.1.1) are widespread in all three domains of
life: Archaea, Bacteria, and Eucarya. These enzymes
catalyze the hydrolysis of internal glycosidic bonds in starch
and related poly- and oligosaccharides.R-Amylases play a
central role in carbohydrate metabolism of microorganisms,
plants, and animals. Furthermore, they are widely used in
the food and starch processing industry. Many of the
enzymatic studies have been carried out with PPA, which
serves as a model system.

PPA is a single polypeptide chain of 496 amino acid
residues56-59 consisting of three structural domains, domain
A (residues 1-99, 170-404), domain B (residues 100-169),
and domain C (residues 405-496). Domain A adopts a (â/
R)8 barrel structure and contains the three catalytic residues
Asp197, Glu233, and Asp300. Domain B occurs as an
excursion from domain A and is the structurally least ordered
of the three domains; it contains one calcium-binding site.
Domain C forms an all-â structure and seems to be an
independent domain with unknown function.56 The active
site and the possible roles of associated ions have been well
characterized from the crystal structures of several amylases.
A deep cleft in domain A is accepted to be the substrate-
binding site.56-62 An essential chloride ion and a calcium
ion are located closer to this V-shaped depression and have
been suggested to enhance the catalytic activity.62-65

While substantial evidence is available for the role of
catalytic residues in amylases, very few studies have been
carried out on the role of loops surrounding the active site
that interact with the substrate. In the crystal structures of
the free protein (PPA I56 and II59 which differ by two
residues) loop 304-310 (Gly-His-Gly-Ala-Gly-Gly-Ser) has
larger B-factors than the average B-factors of the atoms in
the protein. However, in the crystal structures of PPA I
complexed with acarbose57 and PPA II complexed with
V-153259 the B-factors of this loop are close to the average
value in the protein where the loop has moved toward the
active site. The maximum main-chain movement is∼5 Å at
His305, which approaches the inhibitor from the solvent side
to make a hydrogen bond with a glucose residue. The
outcome of this movement is an apparent closure of the
surface edge of the cleft.57 Subsequently, several hypotheses
have been put forward with respect to the function of the
mobile loop inR-amylases, such as providing assistance in
holding the glucose residues in a favorable orientation during

Sm
QH ) (kB/2){N + ln[(2π)N Det(σ)]} (5)
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catalysis,57 or assisting in the transition state,66 or inducing
a trap-release mechanism of substrate and products.67

I.7. Extension of HSMD for Loops.This work constitutes
the first step in extending HSMC(D) to surface loops in
proteins, for which the above short mobile loop (with its
small residues) serves as an ideal system. Two MD simula-
tions, starting from the X-ray structures of the free and
complexed PPA II, 1pif and 1pig, respectively,59 will span
the corresponding microstates, and the entropy and free
energy will be calculated by HSMD. In this initial study the
loop is modeled by the AMBER force field68 alone (where
solvation effects are not considered) and by the AMBER
and the highly approximate GB/SA implicit solvent.69

Therefore, the study is focused mainly on (technical)
implementation issues of HSMD rather than on the role of
the loop in the enzymatic function of PPA; the latter subject
will be discussed in future studies where explicit water will
be introduced. Still, the present study might indicate whether
the transition of the loop to the bound microstate constitutes
a selected fit, i.e., whether this microstate is reachable in
the free protein. We also discuss in detail various theoretical
aspects of HSMD elaborating in particular on the problematic
definition of a microstate.

II. Theory and Methodology
II.1. The Protein and Loop Studied. As was pointed out
in section I.6 we study the loop ofN ) 7 residues, 304-
310 (Gly-His-Gly-Ala-Gly-Gly-Ser), of PPA in two mi-
crostates related to the free and bound loop structures. The
starting point is the available crystal structures of PPA II,
1pif and 1pig,59 respectively. Because the structures of these
proteins are almost identical, we have chosen to carry out
the calculations with the 1pif structure, where the loop
structure of 1pig is attached to the 1pif structure by
superimposing the structure of 1pig on that of 1pif (the ligand
was discarded); this would enable one to study the stability
of the bound microstate of the loop in the structure of the
free protein, as discussed in the previous section I.7. PPA is
a relatively large protein (496 residues), and it would be
computationally unfeasible to include all of its atoms in the
calculations. Therefore, we consider only a template of 700
atoms (the same atoms for the bound and free structures)
that are close to the loop where the rest of the protein’s atoms
are ignored. The construction of the template is described
in detail in a previous publication.51

The loops are modeled in vacuum where the potential
energy is defined solely by the AMBER96 force field68 and
in solution where the implicit solvation model, GB/SA,69 is
added to this force field. The His residue is protonated in
the free and bound states. These systems are simulated by
MD using the package TINKER,70 where the loop is free to
move while the template (of 700 atoms) is kept fixed in its
X-ray coordinates and only the loop-loop and loop-
template interactions are considered, i.e., they define the
potential energy. However, HSMD (as well as LS and QH)
is implemented naturally in internal coordinates; therefore,
the simulated conformations should be transferred from
Cartesians to the dihedral anglesæi, ψi, andωi (i)1,N)7)
and the bond anglesθi,l (i)1,N, l)1,3) and the side-chain

anglesø and the corresponding bond angles. For the present
loop we consider twoø angles one of His and one of Ser,
while the contribution of the side chain of Ala is ignored;
also, because the side chains are much shorter than the
backbone and are not restricted by the loop closure condition,
the effect of their bond angles on entropydifferencesis
expected to be small and is thus ignored (in the next section
we argue that to a good approximation bond stretching can
be ignored as well). For convenience, these angles (ordered
along the backbone) are denoted byRk, k ) 1,45 ) K.

II.2. Statistical Mechanics of a Loop in Internal
Coordinates. The partition functionZm (eq 1) of a loop is
an integration of exp- [E(x)/kBT] with respect to the loop’s
Cartesian coordinates,x over a microstatem. The change of
the variables of integration fromx to internal coordinates,
Rk, k ) 1,K, makes the integral dependent also on a Jacobian,
J, which for a linear chain has been shown to be a simple
function of the bond angles and bond lengths independent
of the dihedral angles.39,40,42This transformation is applied
under the assumption that the potentials of the bond lengths
(“the hard variables“) are strong, and, therefore, their average
values can be assigned toJ, which to a good approximation
can be taken out of the integral (however, see a later
discussion in this section). For the same reason one can carry
out the integration over the bond lengths (assuming that they
are not correlations with theRk), and the remaining integral
becomes a function of theK dihedral and bond angles
(Rk)39,40,42 and a Jacobian that depends only on the bond
angles; the same discussion also holds for a loop. The
partition function becomes

where [Rk] ) [R1,...RK]. D is a product of the integral over
the bond lengths and their JacobianJ. The Jacobian [Πj sin-
(θj)] of the bond angles,θj, that should appear under the
integral is omitted for simplicity. Weassume Dto be the
same (i.e., constant) for different microstates of the same
loop, and, therefore, lnD cancels and can be ignored in
calculations of free energy and entropydifferences. The
Boltzmann probability density corresponding toZm (eq 6) is

and the exact entropySand exact free energyF (defined up
to an additive constant) are

and

It should be pointed out that the fluctuation of theexact
F is zero,71 because by substitutingFB([Rk]) (eq 7) inside
the curly brackets of eq 9 one obtainsE([Rk]) + kBT ln FB-
([Rk]) ) -kT ln Zm ) Fm, i.e. the expression in the curly
brackets is constant and equal toFm for any set [Rk] within
m. This means that the free energy can be obtained from
any singleconformation if its Boltzmann probability density

Z′m ) DZm ) D ∫m
exp{-E([Rk])/kBT}dR1...dRK (6)

FB([Rk]) ) exp{-E([Rk])/kBT}/Zm (7)

Sm ) -kB ∫m
FB([Rk])lnFB([Rk])dR1....RK (8)

Fm ) ∫m
FB([Rk]){E([Rk]) + kBTlnFB([Rk])} dR1....RK (9)
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is known. However, the fluctuation of an approximate free
energy (i.e., which is based on an approximate probability
density) is finite, and it is expected to decrease as the
approximation improves.49,71-74 Using the HSMC(D) method,
it is possible to estimate the free energy of the system from
any single structure.

With MD the bond stretching energy is taken into account
in eq 9 (and in free energy functionals defined later), while
the corresponding entropy is ignored. The contribution of
this energy to the free energy becomes an additive constant
if one accepts the assumptions about the stretching energy
and the corresponding Jacobian made prior to eq 6. This is
a very good approximation; however, if the bond stretching
entropy should be considered, we argue in section II.6 that
it can be estimatedapproximatelywithin the framework of
HSMD by assuming that bond stretching is independent of
the other interactions.

II.3. On the Practical Definition of a Microstate Thus
far we have defined microstates in general terms and
discussed various techniques for calculating their populations,
pm (or the ratiospm/pn); however, such calculations cannot
be carried out without first establishing apracticaldefinition
of a microstate, which is not straightforward. Therefore,
before discussing the theory further, we elaborate about this
important issue that has been ignored to a large extent in
the literature but has been given considerable thought by us
over the course of years.9,45,46,74-77 For simplicity we consider
(for this discussion) anN-residue peptide in a helical
microstateΩh with constant bond lengths and bond angles
(ωi)180°) meaning that its backbone conformation is solely
defined by the angles,æi andψi (i)1,N); in Ωh these angles
are expected to vary within relatively small ranges∆æi and
∆ψi aroundæi ) -60° and ψi ) -50° (we ignore for a
moment the side chains). However, ifN is not too small,
the correct limits ofΩh in terms of [æi,ψi] are unknown even
for this simplified model because the strongly correlated
angles define a complicated narrow “pipe” within the region,
∆æ1x∆ψ1x∆æ2x∆ψ2 ‚‚‚‚‚ ∆æNx∆ψN. Obviously, these cor-
relations are taken into account by an exact simulation
method, and, thus, in practice,Ωh can be defined (or more
correctly, represented) by alocal MC (MD) sample of
conformations initiated from anR-helical structure (as
mentioned in section I.1).

However, this definition should be used with caution.
Thus, a short simulation will span only a small part ofΩh,
and this part will grow constantly as the simulation continues;
correspondingly, the calculated average potential energy,Eh,
and the entropy,Sh (obtained by any method), will both
increase, and the free energy,Fh, is expected to change as
well. As the simulation time is increased further, side-chain
dihedrals will “jump” to different rotamers, which according
to our definition should also be included withinΩh; for a
long enough simulation the peptide is expected to “leave”
theR-helical region moving to a different microstate. Thus,
in practice, the microstate size and the corresponding
thermodynamic quantities depend on the simulation time.
In some cases, one can better defineΩh by discarding
structures with dihedral angles beyond predefined∆æi and
∆ψi values or structures that do not satisfy a certain number

of hydrogen bonds; one can also apply energetic restraints
where their bias should later be removed. However, these
restrictions are somewhat arbitrary and are difficult to apply
for calculating the differences∆Fmn and ∆Smn between
microstatesm andn, which is our main interest. Therefore,
in practice there is always some arbitrariness in the definition
of a microstate, which affects the calculated averages. This
arbitrariness is severe with some methods and can be
controlled (minimized) by others, as is discussed in sections
II.9 and II.10.

II.4. Exact Scanning Procedure. The HS, LS, and
HSMC(D) methods are based on the ideas of theexact
scanning method, which is a step-by-step construction
procedure for a peptide.78,79 For simplicity this construction
is described for anN-residue polyglycine molecule (with
dihedral and bond angles denotedRk, 1eRke6N)K) in a
microstatem. Thus, starting from nothing, a conformation
of this molecule is built by defining the anglesRk step-by-
step with transition probabilities (TPs) and adding the related
atoms;79 for example, the angleæ determines the coordinates
of the two hydrogens connected to CR, while the bond angle
N-CR-C′ determines the position of C′. Thus, at stepk,
k-1 anglesR1, ‚‚‚ , Rk-1 have already been determined; these
angles and the related structure (the past) are kept constant,
and Rk is defined with theexactTP densityF(Rk|Rk-1 ‚‚‚
R1)

whereZfuture(Rk ‚‚‚ R1) is a future partition function defined
overm by integrating over the future conformations defined
by Rk+1 ‚‚‚ dRK (within m) where the past angles,R1 ‚‚‚ Rk

(and their corresponding atoms), are held fixed

For simplicity, from now on we shall omit in most cases
the subscriptm from the thermodynamic functions. The
product of the TPs (eq 10) leads to the probability density
of the entire conformation (eq 7)

This construction procedure is not feasible for a large
molecule because the scanning range grows exponentially
and the limits of the microstatem are practically unknown,
as discussed in section II.3 (for a practical use of this method
see ref 79). However, the exact scanning method constitutes
the basis for HS as well as for the much less restricted
HSMC(D) and LS methods. The exact scanning method is
applicable to a peptide (loop) with side chains,55 where for
a loop all the backbone future conformations should also
satisfy the loop closure condition.

Theexactscanning method is equivalent to any other exact
simulation technique (in particular MC and MD) in the sense
that large samples generated by such methods lead to the
same averages and fluctuations. Therefore, one can assume
that a given MC or MD sample has rather been generated

F(Rk|Rk-1 ‚‚‚ R1) ) Zfuture(Rk ‚‚‚ R1)/[Zfuture(Rk-1 ‚‚‚ R1)] (10)

Zfuture(Rk ‚‚‚ R1) ) ∫m
exp-

[(E(RK, ‚‚‚ ,R1))/kBT]dRk+1 ‚‚‚ dRK (11)

FB(RK, ‚‚‚ ,R1) ) ∏
k)1

K

F(Rk|Rk-1 ‚‚‚ R1) (12)
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by the exact scanning method, which enables one to
reconstruct each conformationi by calculating the TP
densities thathypotheticallywere used to create it step-by-
step. With HSMC(D) (unlike HS) theentire future is
considered in the reconstruction process, and in this respect
HSMC(D) can be considered to be exact.

II.5. The HSMC(D) Method. The theory is described for
HSMD (which is more efficient and practical than HSMC55)
as applied (for simplicity) to anN-residue polyglycine
molecule. One starts by generating an MD sample of
microstatem; the conformations are then represented in terms
of the dihedral and bond anglesRk, 1eRke6N)K, and the
variability range∆Rk is calculated

whereRk(max) andRk(min) are the maximum and minimum
values ofRk found in the sample, respectively.∆Rk, Rk(max),
and Rk(min) enable one to verify that the sample spans
correctly the microstatem.

As pointed out in section II.4, with our approach a sample
conformationi is reconstructed step-by-step by calculating
the TP density of eachRk (eq 10) from the future partition
functionsZfuture (eq 11). However, a deterministic integration
of Zfuture based on theentire future (within the limits ofm)
is difficult and becomes impractical for a large peptide where
m is unknown (see section II.3). The idea of HSMD is to
obtain the TPs (eq 10) by carrying out MD simulations of
the future part of the chain rather than by evaluating the
integrals definingZfuture (eq 11) in a deterministic way. Thus,
at reconstruction stepk of conformationi the TP density,
F(Rk|Rk-1 ‚‚‚ R1), is calculated from an MD sample ofnf

conformations (generated in Cartesian coordinates), where
the entire future of the peptide is moved (i.e., the atoms
defined byRk, ‚‚‚ ,RK) while the past (the atoms defined by
R1, ‚‚‚ ,Rk-1) are kept fixed at their values in conformation
i. A small segment (bin)δRk is centered atRk(i), and the
number of visits of the future chain to this bin during the
simulation,nvisit, is calculated; one obtains

whereFHS(Rk|Rk-1 ‚‚‚ R1) becomes exact for very largenf

(nf f ∞) and a very small bin (δRkf 0). This means that in
practiceFHS(Rk|Rk-1 ‚‚‚ R1) will be somewhat approximate
due to insufficient future sampling (finitenf), a relatively
large bin sizeδRk, an imperfect random number generator,
etc. Because this TP is also applicable to HSMC, we denote
it (and functions derived from it) with ‘HS’ (rather than
‘HSMD’). Notice that with HSMD the future conformations
generated by MD at each stepk remain in general within
the limits of m, which is represented by the analyzed MD
sample. The corresponding probability density is

FHS([Rk]) defines approximate entropy and free energy
functionals,SA andFA, which can be shown using Jensen’s

inequality to constituterigorous upper and lower bounds,
respectively50

where<E> is the Boltzmann average of the potential (force
field) energy, estimated from the MD sample, andFB (eq 7)
is the Boltzmann probability density with which the sample
has been generated.SA is estimated from a Boltzmann sample

of sizen by the arithmetic average,SA

As discussed in section II.2, the fluctuation (standard
deviation) of the correct free energy (eq 9) is zero, while
the approximateFA has finite fluctuation,σA (estimated by
its arithmetic average,σA), which is expected to decrease as
the approximation improves (i.e., asnf increases and/orδRk

decreases)49,71-74

While (for simplicity) in the theory above only a single
angle is reconstructed at each stepk, in practice a pair of
angles is treated simultaneously, where each pair consists
of a dihedral angle and its successive bond angle (e.g.,æ
and the bond angle N-CR-C′). Thus, at each step bothRk

andRk+1 are considered, andnvisit is increased by 1 only if
Rk andRk+1 are located within the limits ofδRk andδRk+1,
respectively. The HSMD process described above for polyg-
lycine is also applicable to a side chain and a loop, where
the reconstruction process of the latter starts from the first
residue (which is connected to one end of the template), and
the future chains are always connected (by the force field)
to the second end of the template. Clearly, the conformational
freedom of the future chains decreases as stepk increases.

It should be pointed out again that in the case of HSMD
the dependence ofFA (eq 17) on the bond stretching energy
is only through<E>, while this interaction is ignored in
SA. However, under the assumptions leading to eq 6 this is
not expected to affect differences in free energy which are
our main interest. Still, if one seeks to include the bond
stretching entropy, one can use a transition probability
density,F(ak), similar to eq 14 for the bond lengthak which
corresponds to the pair of atomsk andk+1; considering the
Jacobian, one obtainsF(ak) ≈ nvisit(ak)/[nf3-1δ(ak

3)], where
δak is small compared toak and nvisit(ak) is the number of
visits to ak. In this approximationthe bond stretching is
independent of the other interactions and thusFTP

HS )
FHS(Rk|Rk-1 ‚‚‚ R1)F(ak). Both probability densities can be
calculated simultaneously, which in practice would not
increase computer time.

II.6. The Reconstruction Procedure with HSMD. The
HSMD reconstruction procedure needs further discussions.

∆Rk ) Rk(max )- Rk(min ) (13)

F(Rk|Rk-1 ‚‚‚ R1) ≈ FHS(Rk|Rk-1 ‚‚‚ R1) ) nvisit/[nfδRk] (14)

FHS(RK, ‚‚‚ ,R1) ) ∏
k)1

K

FHS(Rk|Rk-1 ‚‚‚ R1) (15)

SA ) -kB ∫m
FB([Rk])ln FHS([Rk])dR1 ‚‚‚ RK (16)

FA ) 〈E〉 - TSA ) 〈E〉 +

kBT∫m
FB([Rk])ln FHS([Rk])dR1 ‚‚‚ RK (17)

SA )
1

n
∑
t)1

n

ln Ft
HS (18)

σA ) [1n ∑
t)1

n

[FhA - Et - kBT ln Ft
HS]2]1/2

(19)
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Thus, the MD simulation of the future chain at stepk starts
from the reconstructed conformationi, and everyg fs the
current conformation is considered, where theninit initial
considered conformations are discarded for equilibration. The
nextnf (considered) future conformations are represented in
internal coordinates, and their contribution tonvisit (eq 14)
is calculated. An essential issue is how to guarantee an
adequate coverage of microstatem, i.e., that the future chains
will span its entire region (in particular the side-chain
rotamers) while avoiding their “overflow” to neighbor
microstates, conditions that will occur for a too small and a
too largenf, respectively. To be able to control the extent of
coverage ofm the following procedure has been applied:nf

has been divided into several (j) shorter repetitive procedures
(“units”), each based onn′f < nf conformations wherenf )
jn′f, and each unit starts from the reconstructed structurei
with a different set of velocities followed by equilibration
of size, ninit; obviously, one would seek to determine the
minimal values forn′f, j, and ninit, which would keep the
future chains withinmwhile allowing its adequate sampling.
A similar procedure was first suggested by Brady and
Karplus80-82 within the framework of the QH method and
was also used in implementations of the LS method to
peptides.9,75

To estimate the extent of coverage of the reconstructed
samples of the future chains one can generate a sample of
the entire peptide (or loop) in the same way it is generated
in the reconstruction process. Thus, starting from conforma-
tion i and discardingninit conformations for equilibration,
the sample can be of sizen′f (using g)10 fs) or of j
consecutive samples of sizen′f, each starting fromi with a
different set of velocities. The∆Rk values (eq 13) of the
dihedral angles (of both backbone and side chains) of this
sample are then calculated and compared to the correspond-
ing values obtained for the studied sample. The∆Rk values
of the studied sample can also be compared with∆Rk values
calculated during the reconstruction process itself for ran-
domly chosen one or two conformations. These measures
enable one to optimize the values ofninit, n′f, andj. It should
be pointed out, however, that in general we are interested in
an entropy difference,∆Sm,n

A , between two microstates,
where (as discussed later) the setninit, n′f, and j should be
optimized simultaneously for both microstates; the result for
∆Sm,n

A is considered reliable if it is found to be stable for a
large range of the parametersninit, n′f, and j. From now on
we shall replace in most casesn′f by the word unit.

II.7. Upper Bound and Exact Expressions for the Free
Energy. In addition to FA(FHS([Rk])) (eq 17), which in
practice is a lower bound, one can define an upper bound
functional denotedFB 47

Notice that (unlikeFA) the statistical reliability of estimat-
ing FB decreases sharply with increasing system size. The
inequalities FA e F e FB will hold provided that the
assumptions leading to eq 6 are valid. In this caseFB (like

FA) is increased by an additive constant (contributed by the
bond stretching energy) which is cancelled in free energy
differences of microstates. However, if deviations from these
assumptions occur,FB will be affected more significantly
than FA becauseE/kBT + ln FHS is exponiated in the
numerator and denominator of eq 20; thus, to observeF e
FB one might need to consider the bond-stretching entropy
as well (see discussions in refs 46, 50, and 55).

As shown for fluids in ref 50, anexactexpression forF,
denotedFD, is55

where [dRk] ) dR1 ‚‚‚ dRK andFHS/kBT ) E([Rk])/kBT + ln
FHS([Rk]). The above discussion forFB also applies toFD,
where its estimation is statistically more reliable than that
of FB which is defined as a ratio of two summations similar
to that definingFD.

II.8. The Local States (LS) Method. With the LS
method44-46 (applied to anN-residue polyglycine with 6N
) K backbone angles,Rk) the ranges∆Rk (eq 13) are divided
into l equal segments, wherel is the discretization parameter.
These segments are denoted byνk (νk)1,l), where an angle
Rk is represented by the segmentνk to which it belongs, and
a conformationi is expressed by the corresponding vector
of segments [ν1(i), ν2(i), ...,νK (i)]. F(Rk|Rk-1 ‚‚‚ R1) can be
estimated byn(νk, ‚‚‚ ,ν1)/{n(νk-1, ‚‚‚ ,ν1)[∆Rk/l]}, wheren(νk,
‚‚‚ ,ν1) is the number of times thelocal state[i.e., the vector
(νk, ‚‚‚ ,ν1)] appears in the sample. However, in practice,
one uses smaller local states (νk,νk-1,...,νk-b) consisting of
νk and its b preceding angles, whereb is the correlation
parameter.n(νk,νk-1,...,νk-b) lead to a set of transition
probabilitiesp(νk|νk-1,..., νk-b) andapproximateprobability
density,Fi(b,l) ) ∏k)1

K p(νk|νk-1,...,νk-b)/(∆Rk/l), the larger
are b and l the better the approximation (for enough
statistics). TheFi(b,l) lead to rigorous upper and lower
bounds,SA (eqs 16 and 18) andFA (eq 17), respectively,
whereFi(b,l) replacesFHS.

II.9. Calculation of Differences Sm - Sn. With QH, LS,
and HSMC(D) calculation of∆Smn ) Sm - Sn is based on
the absolute values for each microstate. However, in section
II.3 we have argued that the definition of a microstatem
depends to a large extent on the simulation timet where
typically mand its energy and entropy all grow witht. To
be able to carry out a reliable estimation of∆Smn (∆Fmn,
etc.) we simulate bothm andn for the samet looking for a
range oft values where∆Fmn(t), ∆Smn(t), and∆Emn(t) are
stable within the statistical errors [due to the simultaneous
increase ofEm(t), En(t), etc.]. For the QH method such stable
results constitute the best final answer. For the LS method,
on the other hand, one can calculate∆Smn

A (b,l) [and ∆
Fmn

A (b,l)] for a set of improved approximations (by increas-
ing b and l); if these differences converge within the
statistical errors, the converged values are considered to be
the correct differences due to cancellation of equal systematic
errors in Sm

A(b,l) and Sn
A(b,l) (see discussion in section

II.10). Notice that LS, unlike QH,43 is applicable to a sample
which covers several microstates and, in principle, even to
a random coil.49

FB )
∫m

FB[FHS exp[E/kBT](E + kBT ln FHS)]dR1 ‚‚‚ dRK

∫m
FB[FHS exp[E/kBT]]dR1 ‚‚‚ dRK

(20)

FD ) kBTln( 1
Zm

) ) kBTln[∫m
FB exp[FHS/kBT][dRk]] (21)
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Obviously, if m is less stable thann, then thet values
should be adjusted (i.e., decreased) to fit the stability ofm.
If m is significantly larger thann, then tm should be large
enough to allow adequate coverage ofm tm ∼ tn[Π∆Rk(m)/
[Π∆Rk(n)], where tn is the time required to obtain an
adequate sample forn. However, if ∆Smn(t) increases
monotonically, then it constitutes a lower bound. If the
microstate is restrictive, e.g., side chains should populate a
single rotamer, then the MD sample can be composed of
several smaller samples each starts from the same structure
with a different set of velocities. It should be pointed out
that with LS and QH relatively large samples are required
for obtaining converged TPs46 and converged terms of the
correlation matrix,σ (eq 5),43 respectively. Therefore, one
should verify that the samples remain in the original
microstates and have not “escaped” to neighboring ones. We
have developed methods for analyzing the stability of a
microstate by calculating distribution profiles of dihedral
angles.9,75,77

Unlike QH and LS, HSMC(D) is not based on gathering
statistics from the studied sample; therefore, the required
sample size is relatively small; also,F[HSMC(D)] (but not
necessarilyE andS[HSMC(D)]) can be obtained from a very
small sample (even from a single conformation).50 Therefore,
in our studies the sample size for HSMC(D) is small, and it
has been determined by the range oft values for which the
average ofEm (En) is approximately constant. Again, one
can envisage extreme cases wherem is significantly larger
thann, which would require increasing the sample size for
m as described above for LS. With HSMC(D) the problem
is to control the samples generated in the reconstruction
process, as discussed in section II.6 and the next section
(II.10). All these considerations are applicable to a peptide
in different microstates (e.g., a helix, hairpin, or extended
microstates54,55) as well as to a flexible surface loop, which
populates significantly several microstates. In particular, the
effect of sample size on∆Smn ) Sm - Sn can be reduced,
while controlling this effect with TI and the counting
approaches is difficult (see discussion in ref 19).

II.10. Cancellation of Systematic Errors with HSMD.
It should be pointed out that for any practical set ofninit,
n′f, j and bin sizes,δRk, the calculatedSm

A (Sn
A) will

be approximate, and thus the corresponding difference,
Sm

A - Sn
A, might be approximate as well. However, ifSm

A -
Sn

A is found to be stable for significantly improving
approximations, the constant value can be considered to
be the correct difference. Indeed, in the previous appli-
cation of HSMD to peptides55 and in the present study
of a loop (see section III), relatively small values ofn′f
and j have already led to stable differences, meaning
that systematic errors in bothSm

A andSn
A are comparable and

thus are cancelled inSm
A - Sn

A. This cancellation of rela-
tively large systematic errors (discussed further be-
low) makes HSMD an efficient procedure for peptides/
loops.

To understand the basis for this cancellation, we examine
first two one-dimensional harmonic microstates, i.e., two
oscillators with equal mass and different spring constantsf1
and f2. The exact entropy difference,S2 - S1, can be

expressed in terms of the variances<x1
2> and<x2

2> of the
corresponding coordinates

One can estimate∆S2,1 from two separate MD simulations,
where the corresponding variances are calculated. Iff1 is
significantly smaller thanf2 (i.e., f1 defines a flatter parabola)
and the same step size is used in both simulations a longer
simulation will be required forf1 than forf2 to gain the same
statistical precision. Therefore, if the same sample size is
used for both microstates, then the statistical precision of
∆S2,1 will be determined mostly by that ofS1.

We now examine the entropy contributed by a backbone
dihedral angle,Rk (denotedR for simplicity), in the course
of the reconstruction process.R varies in microstates 1 and
2 within the ranges∆R1 and∆R2 (eq 13), which we denote
∆1 and∆2, respectively. The crudest (but sometimes quite
reliable) HSMD approximation for the corresponding dif-
ference in entropy,∆S0(R), is

which is similar to that of eq 22 above (for brevity we shall
omit R from the equations below). For better HSMD
approximations,∆S0

nf(l), we define the binsδ1 ) ∆1/l andδ2

) ∆2/l, wherel is an increasing integer; the corresponding
probabilities arep1

nf(l) andp2
nf(l) which are defined bynvisit/nf

(eq 14). One obtains

or

where∆Snf(l) can be viewed as an anharmonic term. One
can writepi

exact(l) ) pi
nf(l)xi

nf(l) for i ) 1,2, wherepi
exact(l) )

pi
nf )∞

(l) andxi
nf(l) are thus factors (systematic errors) satis-

fying xi
nf(l)f1 for very largenf; for a given l (bin) one

obtains

However, for large bins,δ (small l), one would expect to
obtain probabilities that are close to the exact ones,p1

exact(l)
and p2

exact(l) [i.e., x1
nf(l) and x2

nf(l) are ∼1] for a relatively
small nf due to adequate statistics, i.e., relatively largenvisit

values. To obtain the exact probabilities (within the statistical
errors) for decreased bin sizes,nf should be increased
adequately, which might increase computer time signifi-
cantly. Thus, for practical values ofnf, x1

nf(l) andx2
nf(l) might

differ significantly from 1 (i.e., large systematic errors).
However, we argue that already for relatively smallnf, x2

nf(l)
≈ x1

nf(l), and the last logarithmic term (eq 25) becomes
smaller than thestatisticalerror leading to the correct value,
∆S(l), within the statistical error. To obtain the correct

∆S2,1 ) S2 - S1 ) (1/2)kB ln(f1f2) )

kB[ln(<x2
2>1/2) - ln(<x1

2>1/2)] (22)

∆S0(R) ) kB[ln∆2 - ln∆1] (23)

∆S0
nf(l) ) kB[ln(p1

nf(l)/δ1) - ln(p2
nf(l)/δ2)] )

kB{ln[p1
nf(l)/p2

nf(l)] + ln(∆2/∆1)}

∆S0
nf(l) ) ∆Snf(l) + ∆S0 (24)

∆Snf(l) ) kB{ln p1
exact(l) - ln p2

exact(l) + ln[x2
nf(l)/x1

nf(l)]} (25)
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contribution (∆S) of dihedral angleR to the entropy
differenceone has to define small enough bins, i.e., large
enoughlmin, where for l > lmin ∆S(l) remains unchanged
within the statistical error. As expected,lmin has to be smaller
for a linear peptide than for a protein loop due to the
restriction of loop closure, which requires relatively small
bins (see sections III.1, 5, and 7).

The relationx2
nf(l) ≈ x1

nf(l) stems from two reasons, where
the first one is the fact that HSMD takes all interactions into
account, and thus for a givennf the future part of the chain
is treated with the same level of approximation in both
microstates. Second, because with MD the atoms are moved
along their potential gradients, the simulations are equally
efficient in both microstates. For peptides55 the condition
x2

nf(l) ≈ x1
nf(l) occurs for much smallernf with HSMD than

with HSMC53 because the efficiency of the MC procedure
used by us depends on the compactness of a structure (e.g.,
hairpin versus extended). Again, as for the parabolas above,
if one microstate is significantly “flatter” than the other (i.e.,
larger ∆Rk values), the requirednf value for obtaining
convergence of∆Swill be determined mainly by the flatter
microstate.

It should be noted that a∆Rk value of the studied sample
might be significantly larger than the actual∆Rk available
for Rk at stepk of the reconstruction process of conformation
i, due to geometrical constraints imposed by the constant
“past”, i.e., the partial structure reconstructed in the previous
steps, 1....k-1. This limiting effect is expected to be more
significant for dihedral angles than for bond angles; more-
over, because at stepk nvisit depends on mutual visits to the
dihedral angle bin,δRk, and to its successive bond angle bin,
δRk+1 (i.e., the modified eq 14 isFHS(Rk,Rk+1|Rk-1 ‚‚‚ R1) )
nvisit/[nf δRkδRk+1]), δRk andδRk+1 can be optimized to reduce
SA for a givennf, which would lead to higher efficiency,
i.e., to convergedSm

A - Sn
A for smallernf (see sections III.4

and III.5). One can envisage a situation where for some side
chains all rotamers are populated in one microstate, but only
one rotamer is populated in the other microstate and vice
versa (see section II.7). These differences might compensate
each other inSm

A - Sn
A; therefore, evaluating the reconstruc-

tion calculations should be carried out with extra caution.
Again, the ultimate test for accuracy is the occurrence of
stableSm

A - Sn
A values for increasingnf and decreasing bin

sizes, as previously discussed.
As mentioned above, with the MC method used by us53

an open peptide structure (e.g., the extended microstate of a
peptide) is simulated more efficiently than a compact hairpin
structure and therefore relatively largenf was needed to
achievex2

nf(l) ≈ x1
nf(l) within the statistical errors. Thus far

we have studied by HSMD microstates of three systems,
degaglycine, NH2(Val)2(Gly)6(Val)2CONH2,55 and in this
paper the 7-residue loop ofR-amylase in vacuum and implicit
solvent. In all these studies the cancellation of systematic
errors has been found to occur for relatively smallnf, which
has been verified by comparing entropy differences obtained
for a wide range ofnf values. For decaglycine, for example,
nf ranges between 500 and 24 000, wherenf ) 500 (5 ps)
leads to the correct results, and HSMD is thus∼100 times
more efficient (in terms of computer time) than HSMC.53

We expect this cancellation of errors to occur also for models
of peptides and loops in explicit water.

III. Results and Discussion
III.1. Simulation Details for the Loop in Vacuum. An MD
simulation (at 300 K) starting from the free PDB structure
has led to a stable sample of size 600 (where a structure is
added to the sample every 0.5 ps) around the PDB structure
with an average energy of∼ -138 kcal/mol. However, in
simulations of this size, starting from the bound PDB
structure, the initial energy (∼ -98 kcal/mol) was decreased
constantly and significantly; we have found this energy to
stabilize around-110 kcal/mol only after a very long MD
run. Because we are interested in studying the stability of
the bound microstate in the free protein (see sections I.7 and
II.1), its sample was generated by combining partial samples
obtained from short MD runs each started from the PDB
bound structure with a different set of velocities. The average
energy of these short samples remained close to-98 kcal/
mol. This procedure can be used with HSMC(D), which
operates on small samples (and in an extreme case even on
a single structure), while it is less effective with the LS9

and the QH methods, which require much larger samples,
as discussed earlier (section II.9). Generating such a com-
bined sample will be useful also for studying the entropy
(and energy) of a transition state.

The free and bound samples and the reconstruction
simulations (future samples) were carried out with the
velocity-Verlet algorithm28 based on a time step of 1 fs,
where the Berendsen28 heat bath controlled the temperature.
Cut-offs on long-range interactions were not imposed, and
in the reconstruction process a structure was added to the
sample everyg ) 10 fs, where theninit ) 250 initial structures
(2.5 ps) were discarded for equilibration. The future samples
were generated for four bin sizes,δ ) ∆Rk/30,∆Rk/15,∆Rk/
10, and∆Rk/5, centered atRk (i.e.,Rk(δ/2) (eqs 13 and 14).
If the counts of the smallest bin are smaller than 50, then
the bin size is increased to the next size and if necessary to
the next one, etc. In the case of zero counts,nvisit is taken to
be 1; however, zero counts is a very rare event. In this context
it should be pointed out that if one had tried to build loop
structurei by selecting angles at random within the ranges
Rk ( δ/2, the constructed structure would differ fromi and
in the case of a loop would not satisfy the loop closure
condition leading to a very high bond stretching energy.
Therefore, the smallest bin chosen for a loop (∆Rk/30) is
smaller than that used for the linear peptides55 (∆Rk/15).
Notice, however, that this structural deviation fromi would
affect both microstates, and the bins used are the largest that
still lead to converging results of∆SA.

For each microstate, two sets of results were calculated,
one is based on unitn′f ) 250 (2.5 ps) andnf values of 250
(j)1), 500 (j)2), 750 (j)3), and 1250 (j)5). The second
set is based on unitn′f ) 1000 (10 ps) andnf values of 1000
(j)1), 2000 (j)2), 4000 (j)4), and 8000 (j)8) (see section
II.6). These sets that lead to an increasing coverage of the
studied microstates, enable one to examine the convergence
of SA(n′f, j) as well as ∆Smn

A (n′f,j), which is our main
interest.
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III.2. Entropy Results in Vacuum. In Table 1 we present
the values of∆Rk (eq 13) for the free and bound microstates
obtained from the corresponding MD samples. These values
suggest that the two samples indeed are concentrated in
conformational space. Table 2 contains two sets of results
for the entropy,TSA (eq16) based on units of 2.5 and 10 ps
for the free and bound microstates. As mentioned in section
III.1, these results were calculated for four different future
sample sizes,nf and four bin sizes; however, the extent of
convergence is demonstrated by the results obtained for the
three smallest bin sizes,∆Rk/10,∆Rk/15, and∆Rk/30, which
are presented in the table. The statistical errors were obtained
from the fluctuations and results obtained for partial samples.
These results were obtained without considering the Jacobian
(Πjsin(θj) (see discussion following eq 6), which enables one
to compare them to those obtained previously for peptides55

without considering the Jacobian as well. As shown later in
section III.4, the contribution of the Jacobian to the entropy
cancels out to a very good approximation in entropy and
free energy differencessour main interest. Therefore, ignor-
ing the Jacobian, which increases the statistical errors (hence
requires larger samples), is justified.

One would expectSA to decrease with decreasing the bin
and increasingnfsan expectation, which is fully satisfied
by the results of Table 2. In particular, for a givennf, SA

always decreases as the bin is decreased; however, a
complete convergence occurs only for the free loop (unit)2.5
ps), where TSA(∆Rk/15,nf )1250) is equal toTSA(∆Rk/
30,nf )1250) within the relatively large statistical errors; for
the other cases the deviation from convergence are small.
Convergence of the two best results (i.e., for the largestnf)
for each bin occurs only for unit) 10 (for both microstates),
while for unit ) 2.5 ps the deviations from full convergence
are again smallT[SA(δ,nf )750) - SA(δ,nf )1250) e 1.2

kcal/mol for all δ]. It should be pointed out that the errors
for the bound loop are smaller than those for the free loop
probably due to the fact that the sample of the bound loop
consists of several subsamples that were generated from the
same initial structure.

The HSMD results for the entropy are compared in the
table to those obtained with the LS and QH methods from
larger MD samples of 5000, 8000, and 10 000 conformations.
These samples consist of several subsamples each started
from the same structure with a different set of velocities,
where a conformation was retained every 50 fs. The QH
results forTS exceed the HSMD values by 12.8 and 11.3
kcal/mol for the free and bound microstate, respectively,
which is in accord withSQH being an upper bound; these
differences are probably also affected (i.e., increased) by the
significantly larger samples used for QH than for HSMD
(see discussion in section II.9). The LS results (calculated
for b)1, l)10), which also constitute upper bounds, are
larger than the corresponding QH values, as was also found
in previous studies.53-55

III.3. Free Energy Results in Vacuum.Results for the
free energy functional,FA (eq 17), its fluctuation,σA (eq
19), and the energies are presented in Table 3. These results
are given only for the smallest bin,∆Rk/30 and unit) 10,
becauseFA values for the other bins can be obtained from
the entropies of Table 2 and the energies provided in the
bottom of Table 3.FA (like SA) does not change (within the
errors bars) asnf is increased from 5000 to 8000, and the
slight (expected) decrease of the central values ofσA with
increasingnf is, however, insignificant within the error bars.
As expected, the QH and LS results forF underestimate the
correct values, and the central values of the energy fluctua-
tions are always larger than those forσA(nf )8000). Finally,
the table shows the differences in free energy and energy
between the free and bound microstates. It is evident that
the free energy differences,∆FA, are all equal within the
statistical errors, and they are also equal to the energy
difference,∆E and∆FLS

A , obtained with LS. This suggests
that the∆SA results are∼0, as indeed shown in the next
section, III.4, i.e., the free microstate is more stable than the
bound one by∼38.8 kcal/mol which is contributed mainly
by ∆E.

The results forFB (eq 20) are not provided in the table
because they do not behave as expected, i.e., they do not
decrease asnf is increased and the bin is decreased. This
“misbehavior” can be attributed to a too small sample size
n and to the fact that the bond stretching energy is included
in the potential energy, while the corresponding entropy is
not taken into account inFHS (eq 15) (see discussion in ref
55). Still, the results obtained forFB are always larger than
those ofFA and thus probably provide upper bounds; the
deviations, however, are relatively large (FB) -191.7 and
-150.2 kcal/mol, deviating fromFA by ∼12 and 14 kcal/
mol for the free and bound microstates, respectively). Due
to the almost convergence of theFA values it is plausible to
assume that theFB results do not lead to improved ap-
proximations for the free energy, i.e., the average values,
FM ) (FA+FB)/2 are probably less reliable than those of
FA. Notice, however, that∆FB ) -39.7 is only 1 kcal/mol

Table 1. Differences ∆Rk (in deg) between the Minimum
and Maximum Values of Dihedral Angles in the Free and
Bound Samples in Vacuuma

free loop bound loop

studied
sample

1 × 2.5 ps
(5 × 2.5 ps)

studied
sample

1 × 2.5 ps
(5 × 2.5 ps)

residue ∆æ ∆ψ ∆æ ∆ψ ∆æ ∆ψ ∆æ ∆ψ

Gly 1 46 74 43 (52) 61 (108) 43 90 51 (48) 96 (74)

His 2 75 88 62 (98) 71 (189) 89 61 78 (87) 51 (68)

Gly 3 58 112 64 (298) 80 (109) 68 72 54 (73) 63 (88)

Ala 4 99 89 73 (103) 70 (87) 91 94 71 (73) 53 (76)

Gly 5 99 105 77 (83) 80 (139) 84 101 58 (70) 43 (60)

Gly 6 112 85 88 (118) 85 (67) 59 64 43 (57) 42 (46)

Ser 7 69 54 52 (88) 65 (65) 81 44 42 (58) 35 (39)

ø1 (His) 58 36 (66) 45 44 (50)

ø2(His) 145 117 (116) 103 62 (96)

ø1 (Ser) 155 55 (163) 39 31 (51)
a ∆Rk are defined in eq 13. The studied samples of n ) 600

conformations were generated with the AMBER force field by retaining
a conformation every 500 fs. The 1 × 2.5 ps samples (of 250
conformations each) were started from two chosen conformations of
the free and bound (studied) samples, by retaining a conformation
every 10 fs and ignoring the first 250 conformations for equilibration.
The sample denoted (5 × 2.5 ps) consists of five 2.5 ps samples
(altogether 1250 conformations) each started from the chosen
structure with a different set of velocities where the initial 250
conformations are ignored for equilibration.
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smaller than∆FA. We also calculated the correspondingFD

values,-196.9 and-154.0 kcal/mol (eq 21), which are
smaller than the relatedFB results but are larger than those
for FM, leading to∆FD ) -42.9 kcal/mol. While it would
be desirable to have converging results forFB andFD, we
demonstrate below that reliabledifferencesin S(andF) can
be obtained from differences inSA (andFA).

III.4. Entropy Differences in Vacuum. Because com-
puter time increases linearly withnf, it is of interest to check
the effect of decreasednf on entropy differences. In Table 4
results are presented forT∆SA ) T[Sfree

A - Sbound
A ] calculated

for the two smallest bins, the fournf values, and unit) 2.5
and 10 ps. We also present results forT∆SA calculated with
the Jacobian. The table reveals that the corresponding results
obtained with and without the Jacobian are equal within the
error bars. This is important because the calculations without
the Jacobian have converged statistically already for samples
of 400 conformations, while including the Jacobian required
increasing the sample size to 600. The results for unit) 2.5
and nf g 500 are converged (within the error bars) with
respect to bothnf and the two bin sizes. The fact that the

Table 2. HSMD Results (in kcal/mol) for the Entropy, TSA (Eqs 16 and 18), at T ) 300 K Calculated from Samples of 600
Conformations of the Free and Bound Microstates in Vacuuma

free loop bound loop

unit ) 2. 5 ps (250) unit ) 10 ps (1000) unit ) 2.5 ps (250) unit ) 10 ps (1000)

∆ nf (j) TSA nf (j) TSA nf (j) TSA nf (j) TSA

∆rk/10 250 (1) 72.1 (3) 1000 (1) 68.6 (2) 250 (1) 71.01 (3) 1000 (1) 67.78 (3)
∆rk/10 500 (2) 69.5 (3) 2000 (2) 68.2 (2) 500 (2) 68.84 (3) 2000 (2) 67.35 (3)
∆rk/10 750 (3) 68.6 (3) 4000 (5) 68.1 (1) 750 (3) 67.81 (4) 4000 (5) 67.28 (3)
∆rk/10 1250 (5) 67.9 (2) 8000 (8) 68.0 (1) 1250 (5) 67.15 (3) 8000 (8) 67.26 (2)
∆rk/15 250 (1) 71.9 (3) 1000 (1) 67.4 (2) 250 (1) 70.90 (3) 1000 (1) 66.89 (3)
∆rk/15 500 (2) 69.0 (3) 2000 (2) 66.8 (2) 500 (2) 68.46 (5) 2000 (2) 66.28 (3)
∆rk/15 750 (3) 67.6 (3) 4000 (5) 66.7 (1) 750 (3) 67.14 (4) 4000 (5) 66.24 (3)
∆rk/15 1250 (5) 66.6 (2) 8000 (8) 66.7 (1) 1250 (5) 66.10 (3) 8000 (8) 66.22 (3)
∆rk/30 250 (1) 71.9 (2) 1000 (1) 67.2 (2) 250 (1) 70.89 (3) 1000 (1) 66.77 (4)
∆rk/30 500 (2) 68.9 (2) 2000 (2) 66.3 (2) 500 (2) 68.42 (4) 2000 (2) 65.97 (4)
∆rk/30 750 (3) 67.5 (2) 4000 (5) 65.9 (1) 750 (3) 67.06 (4) 4000 (5) 65.60 (4)
∆rk/30 1250 (5) 66.3 (2) 8000 (8) 65.8 (1) 1250 (5) 65.91 (3) 8000 (8) 65.51 (4)
TSQH 78.61 (7) 78.61 (7) 76.8 (2) 76.8 (2)
TSLS 91.6 (4) 91.6 (4) 90.9 (7) 90.9 (7)
a The bin sizes are δ ) ∆Rk/l (eq 13). The two units of 2.5 and 10 ps used are also defined (in parentheses) by their number of conformations,

250 and 1000, respectively. nf denotes the sample size of the future chains used in the reconstruction process, nf ) unit × j, where j is the
number of simulations of unit size applied at each reconstruction step. The statistical errors are given in parentheses, e.g., 66.3 (2) ) 66.3 (
0.2. SQH is the quasi-harmonic entropy (eq 5), and SLS (eqs 16 and 18 and section II.8) is SA obtained by the local states method using b ) 1
and discretization parameter l ) 10; these results were obtained from larger samples (for details see text). All calculations were carried out with
the AMBER force field. The entropy is defined up to an additive constant that is the same for both microstates.

Table 3. HSMD Results at T ) 300 K for the Free
Energy, FA, the Interaction Energy, Eint, Their Fluctuations,
and ∆FA and ∆E for the Free and Bound Microstates in
Vacuuma

free loop bound loop free-bound

nf -FA σA, σE -FA σA, σE ∆FA ∆Eint

1000 204.7 (3) 4.4 (3) 165.79 (8) 4.5 (3) -38.9 (4)
2000 203.7 (3) 4.3 (3) 165.0 (1) 4.4 (2) -38.7 (4)
4000 203.3 (3) 4.3 (3) 164.62 (6) 4.4 (2) -38.7 (3)
8000 203.3 (2) 4.2 (3) 164.54 (6) 4.4 (2) -38.7 (3)
-FQH 216.1 (1) 175.8 (3) -40.2 (4)
-FLS 229.1 (4) 190.0 (7) -39.1 (5)
-Eint 137.5 (3) 4.4 (3) 99.02 (5) 4.49 (4) -38.4 (3)

a FA (eq 17) is a lower bound of the free energy, and σA (eq 19) is
its fluctuation. The results were obtained from samples of n ) 600
conformations for the smallest bin size, δ ) ∆Rk/30, unit ) 10 ps,
and all future sample sizes nf. FQH (see eq 5) and FLS (eq 17 and
section II.8) are free energies obtained by the quasi-harmonic
approximation and the local states method (b)1, l)10), respectively,
and are based on larger samples (see text). The average potential
energy, Eint, of the studied samples appears in the bottom row; σE is
the energy fluctuation (these results are in kcal/mol). All free energies
are in kcal/mol and are defined up to the same additive constant for
both microstates. All calculations were carried out with the AMBER
force field. The statistical error is defined in footnote a of Table 2.

Table 4. Entropy Differences, T∆SA ) T[Sfree
A -Sbound

A ] (in
kcal/mol) at T ) 300 K in Vacuuma

unit ) 2.5 ps (250) unit ) 10 ps (1000)

nf T∆SA
T∆SA

(Jacobian) nf T∆SA
T∆SA

(Jacobian)

∆rk/15 250 1.0 (2) 1.2 (1) 1000 0.5 (2) 0.6(2)
∆rk/15 500 0.5 (2) 0.6 (2) 2000 0.5 (2) 0.7 (1)
∆rk/15 750 0.5 (2) 0.6 (2) 4000 0.5 (1) 0.6 (1)
∆rk/15 1250 0.5 (1) 0.6 (1) 8000 0.5 (1) 0.6 (1)
∆rk/30 250 1.0 (2) 1.1 (1) 1000 0.5 (2) 0.6 (1)
∆rk/30 500 0.5 (2) 0.6 (2) 2000 0.3 (2) 0.4 (1)
∆rk/30 750 0.4 (2) 0.5 (2) 4000 0.3 (1) 0.4 (1)
∆rk/30 1250 0.4 (1) 0.5 (1) 8000 0.3 (1) 0.4 (1)
T∆SQH 1.8 (2) 1.8 (2)
T∆SLS 0.6 (3) 0.6 (3)

a SA is an upper bound of the entropy (eqs 16 and 18). The results
for T∆SA were obtained from samples of n ) 600 conformations for
the two smallest bins, δ ) ∆Rk/15 and δ ) ∆Rk/30, unit ) 2.5 and 10
ps, and all the future sample sizes, nf. We also present T∆SA results
obtained by HSMD, where SA is calculated with the Jacobian (see
discussion following eq 6). T∆SQH (eq 5) and T∆SLS(eqs 16 and 18
and section II.8) are entropy differences calculated by the quasi-
harmonic approximation and the local states method (b)1, l)10);
they are based on larger samples (see text). All calculations were
carried out with the AMBER force field. The statistical error is defined
in footnote a of Table 2.
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T∆SA value obtained for unit) 2.5 ps andnf ) 500 is equal
to that obtained for a four times larger unit (of 10 ps) and
for a 16 times largernf (8000) suggests thatT∆SA ) 0.3 (
0.1 kcal/mol is the correct result.

This stems from the cancellation (inT∆SA) of ap-
proximately equal systematic errors for both microstates, as
discussed in section II.10. Thus, Table 2 shows that the worst
approximations that still lead to the correctT∆SA differ from
the best ones byTSA(∆Rk/15,nf)500)- TSA(∆Rk/30,nf)8000)
) 3.2 and 3.0 kcal/mol for the free and bound microstates,
respectively; these differences constitute lower bounds
because the correctTSvalues might be significantly smaller
than TSA(∆Rk/30,nf )8000). The table shows that the dif-
ference obtained by the LS method [0.6 (3) kcal/mol] is equal
to that obtained by HSMD, while QH leads to a significantly
higher difference, 1.8 (2) kcal/mol. However, this good LS
result might be accidental as unreliable differences were
obtained by LS for the extended, helix, and hairpin mi-
crostates of decaglycine.53,55

The similar results obtained for unit) 2.5 and 10 ps
suggest that already for unit)2.5 (nf )500) the coverage of
both microstates by the future chains is adequate and that
for unit ) 10 andnf ) 8000 the future chains still remain
within these microstates. To get an idea about the extent of
this coverage, we selected a structure from each of the two
studied samples from which MD simulations of theentire
loop were started (see the last paragraph of section II.6).
Two samples of 250 conformations and two samples of 5×
250) 1250 conformations were generated in the same way
the future chains are simulated during the reconstruction
process, i.e., 1250 consists of five subsamples (i.e., units)
of 250 conformations, each starting from the initial structure
with a different set of velocities where the first 250 structures
are ignored for equilibration. In these simulations a structure
is retained (as in the reconstruction process) everyg ) 10
fs (unlike the two studied samples that were generated with
g)500 fs). The∆Rk results (eq 13) for the dihedral angles
for these samples are presented in Table 1 which shows that
in most cases the results for 2.5 ps are slightly smaller than
the corresponding results obtained for the studied samples,
while the (expected) larger results for 5× 250 are still close
to those of the studied samples; this applies also to the side
chains. Deviations from this picture occur for 5× 250, where
∆ψ and∆æ of His2 and Gly3, respectively, are significantly
larger than the corresponding values of the studied samples.
This picture suggests that the reconstruction simulations
cover adequately the two studied microstates.

In view of the discussion in section II.10 we have also
tried to optimize the bins’ sizes. As pointed out there, the
values of∆Rk(dihedral) in Table 1 (for the entire samples)
are expected to overestimate the actual∆Rk available forRk

at stepk of the reconstruction process. Therefore, a relatively
large number of visits ofRk(dihedral) to its binδRk ) ∆Rk/l
are not followed by visits ofRk+1(bond angle) to its bin,Rk+1/
l; thus, the number of counts (at bothδRk and δRk+1) is
relatively small, while∆Rk(dihedral)/l is large, leading to
smallFHS(Rk,Rk+1|Rk-1 ‚‚‚ R1) ) nvisit/[nfδRkδRk+1], i.e., to a
large contribution,-kBlnFHS, to the entropy. This undesirable
effect can be reduced by decreasing the values of∆Rk-

(dihedral) used for defining the dihedral bins or increasing
the values of∆Rk(bond angle) used for defining the bond
angles’ bins. We have adopted the latter option by increasing
all of the bond angles bins to 50°/l (typically ∆Rk(bond angle)
ranges from 20 to 25°) and applied HSMD with a relatively
small unit) 1 ps and smallnf ) 100, 200, 300, and 400.
The results forT∆SA appear in Table 5 and are shown to be
very close to those of Table 4, which suggests that HSMD
can be optimized further leading to a further reduction in
computer time.

These results support the conclusions obtained for pep-
tides55 that correct differences∆Smn

A can be obtained for
relatively short reconstruction simulations, which leads to
considerable savings in computer time. In fact, reconstruction
of a structure based onnf ) 500 and 100 requires, respec-
tively, ∼30 and 14 min CPU on a 2.1 GHz Athlon processor.
This time can be reduced by a factor of 2 if the MD
integration is carried out with a time step of 2 fs (rather than
1 fs). Due to strong correlations among the dihedrals and
bond angles within a microstate, it might be possible to treat
four successive angles (two dihedrals and two bond angles)
rather than two angles considered presently at each recon-
struction step. One can increase efficiency further by applying
a cutoff on long-range interactions and running the simula-
tions on the best machines available to date. One would seek
to decrease computer time further by considering the
conformational restraints imposed by the loop closure
condition on the pair of dihedral angles,Rk, and its successive
bond angle,Rk+1, at each reconstruction step. However, in
spite of this restraint the fluctuations in these angles (partially
due to bond stretching) are significant in all reconstruction
steps besides the last two (K- 4, K-3 andK-2, K-1, whereK
is the last angle in the loop). While one could probably ignore
the reconstruction of these two last steps in both microstates
(as long as differences,∆SA are of interest), the gain in

Table 5. Entropy Differences, T∆SA ) T[Sfree
A -Sbound

A ] (in
kcal/mol) at T ) 300 K in Vacuum Using Equal Bins for the
Bond Anglesa

unit ) 1 ps (100)

nf T∆S

∆rk/10 100 0.7 (1)
∆rk/10 200 0.7 (1)
∆rk/10 300 0.7 (2)
∆rk/10 400 0.5 (1)
∆rk/15 100 0.6 (1)
∆rk/15 200 0.6 (1)
∆rk/15 300 0.6 (2)
∆rk/15 400 0.5 (2)
∆rk/30 100 0.6 (1)
∆rk/30 200 0.6 (1)
∆rk/30 300 0.6 (2)
∆rk/30 400 0.4 (2)

a SA is an upper bound of the entropy (eqs 16 and 18). The results
for T∆SA were obtained from samples of n ) 600 conformations for
the three smallest bins, using unit ) 1 ps. The bond angles bins are
δ ) 50°/l, while for the dihedral angles they are δ ) ∆Rk/l (eq 13),
where l ) 10, 15, and 30. nf is the sample size of the future chains
in the reconstruction procedure. All calculations were carried out with
the AMBER force field. The statistical error is defined in footnote a of
Table 2.
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computer time would be small. Finally, while the structure
of TINKER makes it a very convenient tool for developing
new programs, the code is not very efficient, decreasing the
performance of HSMD as well.

III.5. Results for the Loop in Implicit Water. These MD
simulations are based on the AMBER force field68 and the
GB/SA solvation model of Still and co-workers69 which (like
AMBER) is implemented within TINKER.70 The samples
for the free and bound microstates were generated atT )
300 K in a similar way to those in vacuum with some
changes: the sample size isn ) 500 (rather than 600), and
the MD step size was increased to 2 fs, where bonds
involving hydrogens were frozen to their ideal values by
using the RATTLE algorithm;28 also, the smallest bin size
in the reconstruction process was decreased toδ ) ∆Rk/45,
and thus the other three bins are∆Rk/30, ∆Rk/15, and∆Rk/
10.

The∆Rk results for the free and bound samples appear in
Table 6, and they are shown to be larger than the corre-
sponding values obtained for the loop in vacuum in Table
1. This increase in∆Rk is expected due to the protein-
solvent interactions that lead to an increase in the loop
flexibility, hence to its larger entropy. The table also reveals
that in most cases the∆Rk values of the bound microstate
are larger than their counterparts in the free microstate and
in some cases, for∆æ of Gly5, Gly6, and Ser7 and ∆ψ of
Ala4, Gly5, and Gly6, the difference is significant where∆Rk-
(bound) ranges from 200 to 360°. This might lead to the
conclusion that the entropy of the bound microstate is
significantly larger than that of the free microstate. However,
one should bear in mind that theRk are highly correlated,
and in the case of small residues, such as Gly and Ala
significant simultaneous changes in neighbor dihedral angles

can lead mainly to smalllocalizedconformational changes
and thus to a relatively narrow “pipe” of low entropy (see
section II.3). One has also to verify that the large∆Rk values
of the bound microstate do not lead to an overlap of the two
microstates. Comparing structures of the two samples gener-
ated at the same time along the trajectories shows that the
energies differ by∼25 kcal/mol (see also Table 8), the rmsd
of all heavy atoms is∼2.2 Å, and the corresponding dihedral
angles are different and in some cases significantly different
(e.g., 109 vs-45° for ψ of Ala4).

Using the (relatively large)∆Rk values of Table 6 as a
basis for defining the bin sizes for the reconstruction process
will lead to a set of resultsSbound

A with a lower level of
approximation than the corresponding results ofSfree

A ; con-
sequently, relatively small bins and largenf values will be
needed to obtain a set of converging results for the difference
∆SA ) Sfree

A (∆Rk/l,nf) - Sbound
A (∆Rk/l,nf). Indeed, preliminary

calculations have led to decreasing nonconverging results
whereT∆SA ∼ -1 kcal/mol for the best approximation,nf

) 5000 andδ ) ∆Rk /45. To obtain sets of results ofSbound
A

which are on the same level of approximation as those of
Sfree

A we have defined (similar to the vacuum case in section
III.4) a uniform set of bins for the bond angles (for both
microstates) as 100°/l, wherel ) 45, 30, 15, and 10, while
the dihedral angles’ bins,∆Rk/l, are based on the∆Rk values
of Table 6.

III.6. Entropy in Implicit Water. The computations with
GB/SA are much more time-consuming than those carried
out in vacuum; therefore, we performed only one set of
calculations based on unit) 500 (5 ps) withnf ) 625, 1250,

Table 6. Differences ∆Rk, (in deg) between the Minimum
and Maximum Values of Dihedral Angles in the Free and
Bound Samples in Solventa

free loop (solvent) bound loop (solvent)

entire
sample

1 × 5 ps
(10 × 5 ps)

entire
sample

1 × 5 ps
(10 × 5 ps)

residue ∆æ ∆ψ ∆æ ∆ψ ∆æ ∆ψ ∆æ ∆ψ

Gly 1 76 153 54 (101) 122 (175) 92 148 85 (109) 125 (200)

His 2 139 130 114 (140) 95 (360) 125 105 105 (122) 101 (162)

Gly 3 175 124 88 (285) 99 (176) 80 95 100 (202) 139 (151)

Ala 4 131 94 68 (170) 75 (89) 143 288 134 (168) 125 (360)

Gly 5 107 100 89 (119) 111 (131) 199 360 130 (226) 122 (360)

Gly 6 126 109 154 (351) 97 (134) 285 267 205 (293) 357 (357)

Ser 7 83 64 75 (87) 56 (71) 243 109 127 (188) 90 (114)

X1 (His) 55 43 (66) 53 33 (77)

X2 (His) 130 102 (161) 108 95 (130)

X1 (Ser) 317 60 (188) 321 51 (167)
a ∆Rk are defined in eq 13. The studied samples of n ) 500

conformations were generated by retaining a conformation every 500
fs. The 1 × 5 ps samples (of 500 conformations each) were started
from two chosen conformations of the free and bound (studied)
samples, by retaining a conformation every 10 fs and ignoring the
first 250 conformations for equilibration. The sample denoted (10 ×
5 ps) consists of ten 5 ps samples (altogether 5000 conformations)
each started from the chosen structure with a different set of velocities
where the initial 250 conformations are ignored for equilibration. All
calculations were carried out with the AMBER force field and the
implicit solvation GB/SA.

Table 7. HSMD Results (in kcal/mol) for the Entropy, TSA

(Eqs 16 and 18) at T ) 300 K Calculated from a Sample of
200 Conformations of the Free and Bound Microstates in
Solventa

bin size nf TSfree
A TSbound

A T[Sfree
A -Sbound

A ]

∆rk/15 625 70.7 (1) 71.0 (2) - 0.3 (1)
∆rk/15 1250 69.9(1) 70.3 (2) -0.4 (1)
∆rk/15 2500 69.7 (2) 70.1 (2) -0.4 (1)
∆rk/15 5000 69.6 (2) 70.0 (2) -0.4 (1)
∆rk/30 625 70.6 (1) 70.9 (2) -0.3 (1)
∆rk/30 1250 69.4 (1) 69.8 (2) -0.4 (1)
∆rk/30 2500 68.8 (2) 69.2 (2) -0.4 (1)
∆rk/30 5000 68.4 (2) 68.8 (2) -0.4 (1)
∆rk/45 625 70.6 (1) 70.9 (2) -0.3 (1)
∆rk/45 1250 69.4 (2) 69.7 (2) -0.4 (1)
∆rk/45 2500 68.7 (2) 69.1 (2) -0.4 (1)
∆rk/45 5000 68.2 (2) 68.5 (1) -0.4 (1)
TSQH 89 (1) 92 (1) -3 (1)
TSLS 100 (1) 108 (1) -8 (1)

a The bin sizes for the bond angles are δ ) 100°/l (i.e., ∆Rk)100°)
and are δ ) ∆Rk/l for the other angles, where ∆Rk is defined in eq
13. nf, the sample size of the future chains generated in the
reconstruction process, is based on unit ) 500 conformations (5 ps).
SQH is the quasi-harmonic entropy (eq 5), and SLS (eqs 16 and 18
and section II.8) is SA obtained by the local states (LS) method using
b ) 1 and the discretization parameter, l ) 10; these results were
obtained from larger samples (for details see text). The entropy is
defined up to an additive constant which is the same for both
microstates. All calculations were carried out with the AMBER force
field and the implicit solvation GB/SA. The statistical error is defined
in footnote a of Table 2.
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2500, and 5000 conformations. The results forTSA andT∆SA

for the three smallest bin sizes appear in Table 7. For both
microstates, the table shows the expected behavior, i.e., that
for each bin,SA decreases asnf is increased and for a given
nf, SA decreases as the bin is decreased. The results are not
completely converged where the extent of convergence for
the free microstate is slightly better than for the bound one.
Thus,T[SA(δ,nf )2500)- SA(δ,nf )5000)] ∼ 0.1, 0.4, and
0.4 kcal/mol forδ ) ∆Rk/15, ∆Rk/30, and∆Rk/45, respec-
tively, where the corresponding values for the bound
microstate are 0.2, 0.3, and 0.6 kcal/mol. On the other hand,
for nf ) 5000T[SA(δ)∆Rk/30) - SA(δ)∆Rk/45)] ∼ 0.2 for
both microstates. As expected, the entropies in solvent are
larger than in vacuum, whereTSA(∆Rk/45,nf )5000)) 68.2
and 68.5 kcal/mol for the free and bound microstates,
respectively, in solvent, while the corresponding results in
vacuum areTSA(∆Rk/30,nf )5000) ) 65.8 and 65.5 (the
additive constant is assumed to be the same for both
environments).

The HSMD results for the entropy are also compared in
the table with those obtained using the LS and QH methods,
for which larger MD samples (composed of subsamples, see
section III.2) of 5000, 8000, and 10 000 conformations were
generated (for each microstate) by retaining a conformation
every 200 fs (100 MD steps). While both methods are
expected to provide overestimations, the QH results forTS
are significantly larger than the HSMD values by∼21 and
∼24 kcal/mol for the free and bound microstate, respectively,
where the LS results (based onb)2, l)10) exceed those of
QH. These large QH and LS values are also affected by the
significantly larger samples used for the QH and LS
calculations than for HSMD (see section II.9).

III.7. Entropy Differences in Implicit Water. Table 7
also shows that the results forT∆SA ) T[Sfree

A - Sbound
A ] are

converged nicely to-0.4 ( 0.1 kcal/mol forall nf values

and bins (even for the not shownδ)∆Rk/10) (this conver-
gence suggests that decreasing the smallest bin toδ)∆Rk/
45 was not necessary). Thus, in solvent the entropy of the
bound microstate is slightly larger than that of the free
microstate, unlike in vacuum where this relation is reversed.
Again, the QH and LS results forT∆SA, -3(1) and-8(1)
kcal/mol, respectively differ significantly from the HSMD
value.

These perfectly converged results forT∆SA stem from an
exact cancellation (see section II.10) of the systematic errors
in TSfor both microstates, where equal binsδ ) 100°/l are
used for the bond angles. This cancellation occurs for a
relatively large range of approximations; thus, the (not
provided) worstTSA results forδ ) ∆Rk/10 differ from the
best results in Table 7 byTSA(∆Rk/10,nf )500)- TSA(∆Rk/
45,nf )5000) ) 3.4 kcal/mol for both the free and bound
microstates; as discussed in section III.4, these differences
still constitute lower bounds.

The equalT∆SA results obtained for differentnf values
suggest that the level of coverage of both microstates by the
future chains during the reconstruction process is comparable
and adequate, i.e., the future chains remain within these
microstates. To estimate the extent of this coverage, we
carried out MD simulations of theentire loop generating two
samples (for the free and bound microstates) of 1× 500 (5
ps) conformations and two samples of 10× 500 [10× (5
ps)] based ong ) 10 fs in the same way the future chains
are simulated during the reconstruction process (see sections
II.6 and III.4 for the loop in vacuum). The∆Rk results (eq
13) for the dihedral angles for these samples are presented
in Table 6, which shows that in most cases the results for
500 are somewhat smaller and the results for 10× 500 are
larger (but still close) to those of the studied samples;
however, several strong deviations from this picture are also
observed. Notice that the 500× 10 results forø1(Ser), 188
and 167°, are still significantly smaller than 317 and 321°
obtained for the free and bound microstates of the studied
samples, respectively. However, the effect of these too small
(almost equal) values is expected to get cancelled in entropy
differences.

III.8. Free Energy in Implicit Water . Results for the
free energy functional,FA (eq 17), its fluctuation,σA (eq
19), and the energies are presented in Table 8. As in vacuum
(Table 3), these results are given only for the smallest bin,
∆Rk/45. FA increases slightly asnf is increased from 2500
to 5000, whileσA is unchanged (within the error bars). As
expected, the QH and LS results forF underestimate the
correct values, and the energy fluctuations are always larger
than those forσA (nf )5000). Finally, the table shows the
differences in free energy,∆FA, and energy,∆E, between
the free and bound microstates. It is evident that the∆FA

results are all equal within the statistical errors, and they
are also equal to∆E meaning again that the higher stability
(by ∼25.5 kcal/mol) of the free microstate over the bound
microstate is mostly due to∆E.

The computer time required in solvent is significantly
larger than in vacuum, where reconstructing a structure based
on nf ) 500 requires∼3.6 h CPU on a 2.1 GHz Athlon
processor. This stems from the fact that at each MD step

Table 8. HSMD Results at T ) 300 K for the Free
Energy, FA, the Potential Energy, Eint, Their Fluctuations,
and the Differences, ∆FA and ∆Eint, between the Free and
Bound Microstates in Solventa

free loop bound loop free-bound

nf -FA σA, σE -FA σA, σE ∆FA ∆E

625 939.0 (1) 3.7 (1) 913.4 (2) 3.7 (2) -25.6 (1)
1250 937.8 (2) 3.7 (1) 912.3 (2) 3.7 (1) -25.5 (1)
2500 937.1 (2) 3.8 (1) 911.6 (1) 3.7 (2) -25.5 (1)
5000 936.6 (2) 3.8 (1) 911.1 (2) 3.7 (2) -25.5 (1)
-FQH 955 (1) 935 (1) -21 (1)
-FLS 966 (2) 950 (2) -16 (3)
-Eint 868.3 (5) 4.1 (1) 842.6 (3) 4.0 (1) -25.7 (1)

a FA (eq 17) is a lower bound of the free energy, and σA (eq 19) is
its fluctuation. The results were obtained from samples of n ) 200
conformations for the smallest bin size, δ ) ∆Rk/45, unit ) 5 ps, and
all future sample sizes nf. FQH (see eq 5) and FLS (eq 17 and section
II.8) are free energies obtained by the quasi-harmonic approximation
and the local states method, respectively, and are based on larger
samples (see text). The average potential energy, Eint, of the studied
samples appears in the bottom row; σE is the energy fluctuation (these
results are in kcal/mol). All free energies are in kcal/mol and are
defined up to the same additive constant for both microstates. All
calculations were carried out with the AMBER force field and the
implicit solvation GB/SA. The statistical error is defined in footnote a
of Table 2.
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GB/SA is applied to all of the∼700 atoms, while only the
contributions of atoms close to the loop are expected to be
affected by the conformational changes of the loop. We have
not attempted to reduce the calculation time by eliminating
the computation of the (constant) contribution of the atoms
remote from the loop.

IV. Summary and Conclusions
As pointed out in section I.7, this study is focused mainly
on theoretical and implementation aspects of HSMD as
applied (for the first time) to a flexible loop of a protein; for
that it has been convenient to treat initially the relatively
short loop of pancreaticR-amylase which consists of small
residues. The role of this loop in the enzymatic function of
pancreaticR-amylase is presently of secondary interest and
will be discussed in future studies where the ligand, which
interacts with the loop in the bound state (and is missing in
the free protein), will be considered, and explicit watersthe
preferred solvation modelswill be introduced.

Still, the relatively large energy (hence free energy)
differences between the free and bound microstates (∼38
and ∼25 kcal/mol in vacuum and solvent, respectively)
suggest that the bound microstate would not be visited by
the loop in the free protein, i.e., the response of the loop to
ligand binding is probably an induced fit rather than a
selected fit (see sections I.1, I.7, and II.1). The higher free
energy of the bound microstate stems mainly from electro-
static interactions that are contributed by many of the loop
atoms (rather a specific one). Thus, while the crystal
structures of 1pif and 1pig are similar, they still differ in the
structural arrangement of specific side chains, which leads
to (relatively) unfavorable electrostatic interactions between
the (1pif) template and the bound loop structure (which is
superimposed on 1pif). Indeed, the crystal structure of 1pig
is significantly better resolved than that of 1pif, where atoms
with elevated B-factors (larger than 40) appear in 61 and
153 residues (predominantly charged and polar) of these
structures, respectively; also, on average, the B-factors of
1pif are significantly larger than those of 1pig. The unstable
MD trajectory obtained initially for the bound microstate is
a result of the unfavorable electrostatic interactions, which
has led us to generate a bound sample consisting of short
trajectories (see section II.1).

In this context we would like to discuss further our result,
Sfree∼ Sbound. Thus, in the presence of the ligand in the active
site one would expectSfree > Sbound in accord with the
measured B-factors. However, (as discussed above) for both
models studied (where the ligand is missing) the energy of
the free microstate is significantly lower than that of the
bound microstate which suggests thatSfree should be signifi-
cantly lower thanSbound. The unexpected result,Sfree ∼ Sbound

(also obtained approximately with the quasi-harmonic method)
might be attributed to the fact that our bound sample consists
of several partial (relatively short) MD samples all starting
from the X-ray structure of the bound protein with different
sets of velocities, which leads to a relatively concentrated
sample of low entropy (see section III.1).

This discussion demonstrates the problems involved in the
computational definition of a microstatesa topic that has

been ignored to a large extent in the literature but has been
given a great deal of thought in this paper. In particular, we
have provided strong theoretical arguments that systematic
errors inSA(HSMD) for different microstates are comparable
and thus get cancelled in differences,∆SA - our main
interest. This means that one can apply highly crude
approximations (i.e., small reconstruction samples) decreas-
ing computer time dramatically. Indeed, such cancellation
has been observed for peptides55 and for the loop of
R-amylase modeled by the AMBER force field68 and
AMBER with the implicit solvation GB/SA,69 leading to
efficient computations and providing support to our theory.
Notice that calculating transition probabilities for different
stepsk is completely independent, and the reconstruction
process is thus completely parallelized. As for peptides, the
small statistical errors inT∆SA of 0.1-0.2 kcal/mol is very
satisfactory.

An important development has been the realization that
the bins can be optimized, leading to improved (i.e., smaller)
results forSA hence to reliable results forT∆SA for smaller
reconstruction samples. We have not carried out a full bins’
optimization but have demonstrated its potential effectiveness
by applying to both microstates a uniform set of bins,δ )
constant/l for the bond angles. It is plausible to assume that
further bins’ optimization would lead to an improved
probability density,FHS(RK, ‚‚‚ ,R1) (eq 15), hence to more
accurate free energy functionals,FD (eq 22) andFB (eq 21),
where the latter exhibits an upper bound behavior. It has
also been shown that the contributions of the Jacobian are
cancelled out in entropy and free energy differences. The
quasi-harmonic approximation and the local states method
(as expected) overestimate the entropy but more significantly
than for peptides,53,55which might reflect strong long-range
correlations and anharmonic effects within the loop due to
the loop-template interactions.

The theoretical developments introduced in this paper and
the conclusions gathered from the application of HSMD to
the 7-residue loop of pancreaticR-amylase constitute a
mandatory basis for the next step in the development of
HSMDsits extension to the same loop modeled by the
AMBER force field and explicit water. In this treatment the
loop is capped with explicit water,83 and the entropy is
calculated from the sample in a two-stage process, where
the loop structurei is reconstructed first leading toSi (the
surrounding waters, which constitute part of the future, are
moved as well during the reconstruction ofi); next, the water
configuration is reconstructed step-by-step in the presence
of the frozen loop structurei leading toSw/i. One is interested
to estimate<Si> and<Si+Sw/i>, which constitute measures
of flexibility, and their values for the free and bound
microstates can be compared (unlike the energy and free
energy that due to the ligand depend on different sets of
interactions in the free and bound proteins). This study is
being carried out presently. After completing these devel-
opmental stages HSMD will become a mature tool for
studying other flexible loops of interest, such as the 11-
residue lid loop of TIM proteins, and problems which require
calculating the relative and absolute free energy of binding.
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Abstract: The lowest energy structures of bare Gen
z clusters (n ) 10, 12; z ) -6, 0, +2, +4)

obtained using density functional theory (DFT) at the hybrid B3LYP level often are relatively

low-symmetry polyhedra not readily recognizable by the Wade-Mingos rules. However, such

optimized structures may arise from higher symmetry transition states through symmetry breaking

processes. Thus the lowest energy structures for the Ge10
6- and Ge12

6- clusters with

hyperelectronic arachno 2n + 6 skeletal electron counts are derived from pentagonal and

hexagonal prism transition states, respectively, and retain the pentagonal and hexagonal faces

of the prisms upon symmetry-breaking optimization. In addition, a variety of capped cube, prism,

and antiprism transition states are found for the hypoelectronic Ge10
4+, Ge12, and Ge12

4+ clusters,

which go to low-energy low-symmetry optimized structures, typically Cs or Ci, upon following

the normal modes of the imaginary vibrational frequencies.

1. Introduction
The Wade-Mingos rules1-4 historically were derived in
order to relate the structures of polyhedral boranes and
isoelectronic compounds to the number of skeletal electrons.5

However, they subsequently have been used to explain the
shapes of other cluster structures isoelectronic and isolobal
with boranes. According to the Wade-Mingos rules the
polyhedra in the so-calledcloso boranes BnHn

2- and iso-
electronic compounds with 2n + 2 skeletal electrons are the
most spherical deltahedra, namely polyhedra in which all
faces are triangles and the vertices are as similar as possible.
These deltahedral boranes can be considered to be three-
dimensional aromatic systems6,7 with 2n of the 2n + 2
skeletal electrons being used for surface bonding analogous
to the σ-bonding in benzene. The remaining two skeletal
electrons are used for ann-center two-electron core bond
involving overlap of inward pointing radial orbitals from each
of then vertex atoms at the center of the deltahedron. This

latter bond in the deltahedral boranes plays an analogous
role to theπ-bonding in benzene. For the 10- and 12-vertex
structures of interest in this paper the most spherical
deltahedra found in theclosoboranes B10H10

2- and B12H12
2-

and related compounds are theD4d bicapped square antiprism
and theIh regular icosahedron, respectively (Figure 1). Note
that in counting skeletal electrons in the clusters of interest
in this paper either a BH or bare Ge vertex is a donor of
two skeletal electrons.

Now consider hyperelectronic (electron-rich) polyhedral
boranes having more than 2n + 2 skeletal electrons. The
so-callednido boranes withn vertices have 2n + 4 skeletal
electrons and polyhedral structures with one nontriangular
face. Frequently suchnido borane structures can be derived
from a closo borane structure withn + 1 vertices by
removing one vertex and its associated edges. Thus the 10-
vertex nido borane polyhedron, found in the long-known
relatively stable8 B10H14, can be obtained by removal of the
unique degree 6 vertex from the 11-vertexclosodeltahedron
(Figure 2). Similarly the 12-vertexnido borane polyhedron,
found in the ligand9 C2B10H12

2- obtained by reduction of
the carborane C2B10H12, can be formally obtained by removal

* Corresponding author e-mail: rbking@chem.uga.edu.
† University of Georgia.
‡ Babes¸-Bolyai University.
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of a degree 6 vertex from the 13-vertexcloso polyhedron
found in metallaboranes such as (η5-C5H5)CoC2B10H12

(Figure 3).
The Wade-Mingos rules in borane chemistry have been

extended to systems even more hyperelectronic than thenido
compounds such as thearachnocompounds with 2n + 6
skeletal electrons and two nontriangular faces or one large
nontriangular face and thehyphocompounds with 2n + 8
skeletal electrons and an even more open structure. In
principle, thearachnoandhyphostructures withn vertices
can be derived fromclosostructures withn + 2 or n + 3
vertices, respectively, by removal of two or three vertices,
respectively. However, as the structures become electron-
richer the increasingly open polyhedra become increasingly
less recognizable.

The Wade-Mingos rules1-4 are more difficult to apply
to hypoelectronic (electron-poor) clusters containing fewer
than the 2n + 2 skeletal electrons ofclosostructures. Such
systems are not found in borane and carborane derivatives
containing exclusively boron and carbon vertices so that they
were not considered in Wade’s original work.1,2 However,

hypoelectronic structures are found in isoelectronic metal
carbonyl clusters and bare post-transition element clusters.
Hypoelectronic structure types found in systems withn
vertices and less than 2n + 2 skeletal electrons include the
following: (1) a capped deltahedron withm < n vertices,
typically for a system withm + 2 skeletal electrons such as
the capped octahedral osmium carbonyl cluster10 Os7(CO)21

(V ) 7 butm) 6 w 14 skeletal electrons) and (2) “flattened”
deltahedra withf “flattened” vertices pushed toward the
center of the deltahedron,11 typically for a system withV -
f + 2 skeletal electrons such as the In11

7- cluster found in
K8In11 (V ) 11, f ) 3 w 18 skeletal electrons).12

In recent years the chemistry of bare post-transition-metal
clusters has expanded greatly from the original work of Zintl
and co-workers.13-16 Such clusters can be considered to be
formally isoelectronic with boranes and carboranes.17 Thus
a bare group 14 element vertex (Si, Ge, Sn, Pb) is a donor
of two skeletal electrons like a B-H vertex in boranes.
Similarly a bare group 15 element vertex (P, As, Sb, Bi) is
a donor of three skeletal electrons like a C-H vertex in
carboranes. However, in many cases the polyhedra found in
bare post-transition-metal clusters are different from those
found in boranes and related compounds. Furthermore, they
do not relate obviously to polyhedra suggested by the Wade-
Mingos rules,1-4 particularly in the cases of electron-poor
clusters containing bare group 13 elements (Al, Ga, In, Tl),
which are donors of only one skeletal electron. In order to
understand such unusual polyhedra and the chemical bonding
in such structures we have performed density functional
theory (DFT) studies of germanium clusters containing from
5 to 12 germanium atoms.18-23 Germanium was chosen as a
model vertex atom to minimize the charges on clusters
isoelectronic with the known molecules of interest.

Our studies as well as the work of others have indicated
major differences between isoelectronic boranes and carbo-
ranes, on the one hand, and bare germanium and other post-
transition-metal clusters, on the other hand. Examples are
the following: (1) The antiaromaticity of the icosahedral
E12

2- (E ) Si, Ge) as compared with the strong aromaticity
of the isoelectronic B12H12

2- as noted above.24,25 (2) The
lowest energy structure for Ge11

2- is not the most spherical
11-vertex deltahedron22 found in the stable borane B11H11

2-.
(3) The lowest energy structure for Ge8

2- is the spherically
aromaticTd tetracapped tetrahedron rather than the bisdis-
phenoid found in B8H8

2- and related compounds.19 These
differences between isoelectronic bare germanium and borane
clusters appear to be a consequence of the fact that the
external germanium lone pair electrons can participate in the
skeletal bonding, whereas no comparable electrons are
available from the B-H vertices of boranes.

We have also observed many low-energy low-symmetry
(not readily recognizable) germanium clusters Gen

z, particu-
larly those with fewer than 2n + 2 skeletal electrons. Such
polyhedra often arise during the optimization of more
obvious symmetrical polyhedra by following imaginary
vibrational frequencies. The more symmetrical and thus more
recognizable polyhedra can then be considered as transition
states linking isomeric polyhedra of low symmetry. Thus a
useful way of characterizing unsymmetrical low-energy

Figure 1. The most spherical (closo) deltahedra with 10 and
12 vertices.

Figure 2. Conversion of the 11-vertex most spherical delta-
hedron to the 10-vertex nido polyhedron (found in B10H14) by
removal of the unique degree 6 vertex (the “top” vertex) and
the associated edges (colored red).

Figure 3. Conversion of the 13-vertex most spherical delta-
hedron to the 12-vertex nido polyhedron (found in the
C2B10H12

2- ligand in (η5-C5H5)CoC2B10H12) by removal of the
unique degree 6 vertex (the “top” vertex) and the associated
edges (colored red).
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polyhedra is by the more symmetrical transition states from
which they arise.

A previous paper from our group26 considers low-energy
low-symmetry structures of hypoelectronic 11-vertex bare
germanium clusters Ge11

z. In that case, consideration of
transition states leading to such clusters is less useful since
relatively few chemically relevant 11-vertex polyhedra are
readily recognizable because of their generally low sym-
metries. The present paper discusses the transition states
leading to the low-energy low-symmetry structures of 10-
and 12-vertex bare germanium clusters Ge10

z z ) +4 and
Ge12

z z ) 0, +4 found in our previous work.21,23In this case,
the low-symmetry structures often arise from readily recog-
nizable symmetrical transition states. This paper characterizes
such transition states, both for hypoelectronic Ge10

z and Ge12
z

clusters as well as for hyperelectronic Ge10
6- and Ge12

6-

clusters. The Ge10
6- and Ge12

6- clusters with the 2n + 6
arachno skeletal electron counts are of interest since the
readily recognizable pentagonal and hexagonal antiprism
structures satisfying thearachno requirement of 2n + 6
skeletal electrons and two obvious nontriangular faces
(Figure 4) are not the lowest energy structures.

2. Theoretical Methods
The density functional theory (DFT) methods used in this
paper are described in our previous papers on Ge10

z and Ge12
z

clusters.21,23 Thus the geometry optimizations were carried
out at the hybrid DFT B3LYP level27-30 with the 6-31G(d)
(valence) double-ú quality basis functions extended by adding
one set of polarization (d) functions. The Gaussian 98
package of programs31 was used in which the fine grid (75,
302) is the default for numerically evaluating the integrals
and the tight (10-8) hartree stands as default for the self-
consistent field convergence. The symmetries were main-
tained during the initial geometry optimization processes.
In the systems of interest in this paper the transition states
of interest were optimized structures with significant imagi-
nary vibrational frequencies, typically above 100i cm-1.
Symmetry breaking using the normal modes of these
transition states defined by these imaginary vibrational
frequencies was then used to determine optimized structures
with minimum energies. Both the transition states and the
final optimized structures are discussed in this paper with
their relationships being depicted in Figures 5-11 (and
Figures 1S-6S in the Supporting Information) with the
energy differences between the transition state and the final
structure approximately according to scale.

One might raise the legitimate question if this method is
suitable for describing subtle electronic effects governing the

structure of germanium clusters. In this connection Archibong
and St. Amant32 have shown that CCSD(T) calculations on
Ge6

z (z ) 0, -1) give similar results to those obtained at the
B3LYP DFT level of theory.

The individual structures are labeled according to the
number of skeletal electrons and relative energies with the
specific relative energy designations matching those in the
previous papers.21,23 In addition, structures with 10 and 12
vertices are distinguished by the designations (10) and (12),
respectively, in front of their structure labels. Thus the lowest
energy structure of the 10-vertex 26 skeletal electron system
Ge10

6-, designated as26-1 in the previous paper,21 is now
designated as(10)26-1(see Figure 5) in order to differentiate
it from the lowest energy 12-vertex structure with 26 skeletal
electrons, which would now be designated as(12)26-1.

3. Results
3.1. The Systems Ge10

6- and Ge12
6- with the arachno2n

+ 6 Skeletal Electron Counts.The Wade-Mingos rules1-4

suggest that theD5d pentagonal antiprism (Figure 4) should
be the global minimum for the 26 ()2n + 6 for n ) 10)
skeletal electron 10-vertex system Ge10

6- with an arachno
skeletal electron count. Indeed a pentagonal antiprismatic

Figure 4. The pentagonal and hexagonal antiprisms as
possible arachno polyhedra with two nontriangular faces
(namely pentagons and hexagons, respectively).

Figure 5. The distortion of the pentagonal prism transition
state in Ge10

6- along the E1 normal mode of the 75i cm-1

vibrational frequency to give the global minimum (10)26-1.

Figure 6. The distortion of the hexagonal prism transition
state in Ge12

6- along the B1u normal mode of the 152i cm-1

vibrational frequency to give the lowest energy polyhedral
structure (12)30-2.

Wade-Mingos Rules in Bare 10- and 12-Vertex Ge Clusters J. Chem. Theory Comput., Vol. 4, No. 1, 2008211



structure(10)26-3is found for Ge10
6- but at 17.1 kcal/mol

above the global minimum21 (10)26-3. Optimization of aD5h

pentagonal prism starting structure leads to a pentagonal
prismatic transition state with a 75i cm-1 imaginary vibra-
tional mode. Following the corresponding E1′′ normal mode
lowers the energy of the structure by 24.8 kcal/mol leading
to the global minimum(10)26-1 observed21 for Ge10

6-

(Figure 5). The polyhedron in(10)26-1 is derived from a
D5h pentagonal prism by distortion of the top pentagonal face

relative to the bottom face so that the five rectangular faces
linking the two pentagonal faces in the original prism become
two rectangular and six triangular faces by the addition of
diagonals across three of the original rectangular faces. This
distortion necessarily destroys the originalC5 axis in the
pentagonal prism. Also note that the(10)26-1polyhedron is
intermediate between the pentagonal prism with five rect-
angular faces between the two pentagonal faces and the
pentagonal antiprism with ten triangular faces between the
two pentagonal faces.

The Wade-Mingos rules1-4 also suggest that theD6d

hexagonal antiprism (Figure 4) should be the global mini-
mum for the 30 ()2n + 6 for n ) 12) skeletal electron 12-
vertex system Ge12

6- with the arachno skeletal electron
count. Indeed a hexagonal antiprismatic structure(12)30-5
is found for Ge12

6- but at 23.1 kcal/mol above the lowest
energy polyhedral structure(12)30-2.23 Optimization of the
D6h hexagonal prism leads to a hexagonal prismatic transition

Figure 7. The distortion of the D4d bicapped square antiprism
transition state in Ge10

4+ along the E2 normal mode of the
82i cm-1 vibrational frequency to give the lowest energy
polyhedral structure (10)16-1.

Figure 8. The distortion of the C2v tetracapped trigonal prism
transition state in Ge10

4+ along the B2 normal mode of the
161i vibrational frequency to give the Cs polyhedral structure
(10)16-2.

Figure 9. The distortion of the C2v tetracapped square
antiprism transition state in Ge12 along the normal mode of
the 100i B1 vibrational frequency to give the Cs polyhedral
structure (12)24-1.

Figure 10. The distortion of the D2h irregular icosahedron
transition state in Ge12 along the B2g normal mode of the 168i
vibrational frequency to give the D5d bicapped pentagonal
antiprismatic structure (12)24-2.
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state with a 152i cm-1 imaginary vibrational mode. Following
the corresponding B1 normal mode lowers the energy of the
structure by 11.9 kcal/mol leading to the lowest energy
polyhedral structure(12)30-2calculated for Ge10

6- (Figure
6). This structure retains the topology of the hexagonal prism
(i.e., the two hexagonal faces and the six quadrilateral faces
between the two hexagonal faces) but destroys theC6 axis.

3.2. The Hypoelectronic Cluster Ge10
4+. The global

minimum (10)16-1for Ge10
4+ with 16 skeletal electrons is

derived from a relatively high energyD4d bicapped square
antiprism transition state (Figure 7). Following the E2 normal
mode corresponding to the largest imaginary vibrational
frequency (82i) reduces the energy of the system by a
gigantic 66.0 kcal/mol. The symmetry is concurrently
reduced fromD4d to D2d leading to a polyhedron derived
from two interlocking planar pentagons at right angles to
each other, which resembles a “Siamese twin” of two
pentagonal bipyramids (Figure 7). Note that the pentagonal
bipyramid building block of structure(10)16-1is the most
spherical deltahedron with seven vertices and thus requires
2n + 2 ) 16 skeletal electrons forn ) 7 by the Wade-
Mingos rules.1-4

The next higher energy structure(10)16-2for Ge10
4+, at

14.5 kcal/mol above(10)16-1discussed above, is derived
from aC2V tetracapped trigonal prism transition state (Figure
8). Following the B2 normal mode of the largest imaginary
frequency (161i) adds diagonals across two rectangular faces
of the underlying trigonal prism with concurrent conversion
of the corresponding two rectangular face caps to triangular
face caps. The symmetry is thus reduced fromC2V to Cs and
the energy by 16.4 kcal/mol (Figure 8). A relatively small
imaginary vibrational frequency of 32i remains in(10)16-2,
which might arise from a numerical integration error.33,34

A C2V bicapped cube is the transition state to aCs higher
energy structure(10)16-4for Ge10

4+ (Figure 1S), which lies
20.6 kcal/mol above the global minimum(10)16-1(Figure
7). Following the B1 normal mode corresponding to the

relatively large 342i imaginary vibrational frequency in the
bicapped cube reduces the symmetry fromC2V to Cs.
However, the energy is reduced by only 7.9 kcal/mol with
no significant change in the polyhedron topology.

3.3. The Neutral 12-Vertex Cluster Ge12. The lowest
energy structures for the neutral Ge12 cluster with 24 skeletal
electrons are relatively low-symmetry structures derived by
distortion of higher energy transition states. The global
minimum for Ge12, namely(12)24-1(Figure 9), is derived
from a C2V tetracapped square antiprism transition state by
distortion along the B1 normal mode corresponding to the
100i cm-1 vibrational frequency. The symmetry is reduced
from C2V to Cs, and two pairs of triangular faces in the
original tetracapped square antiprism are opened (following
the arrows marked by “O” in Figure 9) up into two
quadrilateral faces. Removal of the two vertices capping
triangular faces from the(12)24-1polyhedron leaves a 10-
vertex polyhedron with 14 triangular faces and one quadri-
lateral face. This is a 10-vertexnido polyhedron and thus
expected by the Wade-Mingos rules1-4 to have the 2n + 4
) 24 for n ) 10 skeletal electrons found in Ge12.

The next higher energy structure(12)24-2for Ge12, at 21.9
kcal/mol above(12)24-1discussed above, is derived from
an irregularD2h icosahedron transition state by distortion
along the B3g normal mode corresponding to the largest
imaginary frequency at 168i cm-1 (Figure 10). This normal
mode involves compression of a pair of antipodal vertices
and leads to a compressed (oblate) bicapped pentagonal
antiprism still retaining the topology of the original icosa-
hedron (i.e., no edges are broken). This process lowers the
energy by 9.0 kcal/mol (Figure 10).

The next higher energy structure(12)24-3for Ge12, at 23.5
kcal/mol above(12)24-1discussed above, is derived from a
D6d hexagonal antiprism transition state by distortion along
the E4 normal mode corresponding to the largest imaginary
frequency at 143i cm-1 (Figure 2S). This process lowers the
energy by a very large 58.9 kcal/mol and the symmetry from
D6d to D2d. Each of the hexagonal faces of the original
hexagonal antiprism becomes a pair of trapezoidal faces by
formation of new transannular edges.

A higher energy structure for Ge12, namely(12)24-6at
28.2 kcal/mol above the global minimum(12)24-1, is
obtained from aD4h tetracapped cube by distortion along
the Eg normal mode corresponding to the 114i cm-1

vibrational frequency (Figure 3S). The process lowers the
energy by 12.8 kcal/mol and the symmetry fromD4h to C2V.
The polyhedron in the resulting structure(12)24-6can be
described as a pair ofC2V bicapped trigonal prisms sharing
their uncapped rectangular faces.

3.4. The Lowest Energy Structure of Ge12
2+. The lowest

energy structure for Ge12
2+, namely theD3d hexacapped

octahedron(12)22-1, is derived from aD4h tetracapped cube
transition state (Figure 4S) by a distortion along the Eg

normal mode corresponding to the 95i cm-1 vibrational
frequency. This process replaces the original 4-fold axis with
a 3-fold axis and lowers the energy by 42.8 kcal/mol. Since
the D3d point group of the hexacapped octahedron is
obviously not a subgroup of theD4h point group of the

Figure 11. The distortion of the D4h tetracapped cube
transition state in Ge12

4+ along the Eg normal mode of the
127i vibrational frequency to give the C2v structure (12)20-4.
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tetracapped cube transition state, this is not a simple
symmetry breaking process.

3.5. Several Structures for Ge12
4+. The global minimum

for Ge12
4+, namely(12)20-1, is aC2V structure that does not

resemble anything actually found in a chemical system.23

The next highest energy structure for Ge12
4+, namely(12)-

20-2at 8.0 kcal/mol above the global minimum(12)20-1, is
a D4h double cube, which can be derived from anOh

cuboctahedron transition state by distortion along the Eu

normal mode of the highest imaginary vibration, namely the
417i cm-1 frequency (Figure 5S). This process is a drastic
rearrangement that lowers the energy of the system by a
gigantic 164.4 kcal/mol.

The next higher energy structure for Ge12
4+, namely(12)-

20-3 at 8.9 kcal/mol above(12)20-1, is derived from aD4h

double square antiprism transition state. Following the Eg

normal mode corresponding to the highest imaginary vibra-
tional frequency, namely the 123i cm-1 frequency, lowers
the energy by a large 62.0 kcal/mol and the symmetry from
D4h to Ci to give a much more open structure than the original
double square antiprism (Figure 5S).

The next structure for Ge12
4+, namely theC2V structure

(12)20-4 at 10.5 kcal/mol above the global minimum(12)-
20-1, is derived from aD4h tetracapped cube transition state
(Figure 11). Distortion along the Eg normal mode of the
largest imaginary frequency at 127i reduces the symmetry
from D4h to C2V with two opposite face caps becoming edge
caps. This process results in an energy gain of 19.1 kcal/
mol.

4. Discussion
The figures in the text and the Supporting Information depict
12 transition states leading to previously obtained21,23 opti-
mized structures for Gen

6- (n ) 10, 12), Ge10
4+, Ge12, Ge12

2+,
and Ge12

4+ including global minima. The polyhedra in most
of these optimized low-energy structures are not readily
recognizable by the Wade-Mingos rules.1-4 Of these 12
transition states, seven of them (Table 1) are within 25 kcal/
mol of the optimized structure and thus are potentially
chemically significant. The remaining five higher energy
transition states, at energies ranging from 42.8 to 164.4 kcal/
mol above the corresponding optimized structure, are sig-
nificant mainly in indicating the route used for the DFT
optimizations. These are the closest ones to the final

optimized structures of any of the initial structures investi-
gated. This is particularly true for theD4h tetracapped cube
transition state leading to theD3d hexacapped octahedron
global minimum(12)22-1of Ge12

4+ (Figure S3), sinceD3d

is not a subgroup ofD4h so that the conversion of the
tetracapped cube to a hexacapped octahedron is not a simple
symmetry breaking process.

A true transition state exhibits exactly one significant
imaginary vibrational frequency, the normal mode of which
indicates the pathway to the corresponding minimum
point. Additional small imaginary frequencies significantly
below 100i cm-1 can be attributed to errors arising from
the numerical integration procedure.33,34The seven transition
states listed in Table 1 all have exactly one imaginary
vibrational frequency at or above 100i cm-1 except for
the pentagonal prism transition state for Ge10

6- (Figure 5),
which has a single imaginary vibrational frequency at
75i cm-1, which was followed in the optimization to the
global minimum(10)26-1for Ge10

6-. Two of the optimized
structures in Table 1, namely theD5d bicapped penta-
gonal antiprism structure(12)24-2for Ge12, derived from a
D2h irregular icosahedron transition state (Figure 11), and
the C2V structure(12)20-4 for Ge12

4+, derived from aD4h

tetracapped cube transition state (Figure 11), have residual
imaginary vibrational frequencies below 100i cm-1 after
optimization. These structures are low-energy structures for
Ge12 and Ge12

4+, respectively, but are not their global
minima.

Most of the high-energy transition states correspond to
structures that are relatively far removed from the final
structure and have more than one imaginary vibrational
frequency large enough to be significant, thereby corre-
sponding more accurately to higher order saddle points. The
most extreme case of this type found in this work is the
cuboctahedron for Ge12

4+, which has three imaginary vibra-
tional frequencies above 100 cm-1, namely 417i cm-1 (Eu),
290i cm-1 (T2u), and 115i (T1g) as well as smaller imaginary
vibrational frequencies at 36i (A2g) and 29i (Eg). Following
the normal mode corresponding to the 417i cm-1 vibrational
frequency results in the gigantic energy lowering of 164.4
kcal/mol and a rather drastic rearrangement leading to aD4h

double cube stationary point(12)20-2. This corresponds to
the lowest energy chemically realistic structure23 found for
Ge12

4+.

Table 1. Seven Transition States within 25 kcal/mol of the Final Optimized Structures

figure species transition state
imaginary

frequenciesa
symmetry
breakingc

energy gainb/ binding energy/atomd

(transition state/minimum)

Hyperelectronic (arachno) Species
5 Ge10

6- pentagonal prism 75i(E1′′) D5hfCs 24.8/+8.1/5.6
6 Ge12

6- hexagonal prism 152i(B1u) D6hfC2v 11.9/-19.9/-20.9

Hypoelectronic Species
8 Ge10

4+ tetracapped trigonal prism 161i(B2),18i(A2) C2vfCs 16.4/-55.9/-57.5
S1 Ge10

4+ bicapped cube 342i(B1),48i(B2) C2vfCs 7.9/-56.1/-56.9
9 Ge12 tetracapped square antiprism 100i(B1) C2vfCs 10.0/-112.2/-113.0

10 Ge12 irregular icosahedron (D2h) 168i(B3g),82i D2hfD5d(73i)c 9.0/-110.4/-111.2
11 Ge12

4+ tetracapped cube 127i(Eg),62i(A2u) D4hfC2v(58i) 19.1/-69.8/-71.4
a Residual imaginary vibrational frequencies are given in parentheses. b Difference between the energy of the transition state and that of the

optimized structure (kcal/mol). c This represents a symmetry change rather than symmetry breaking. d Difference between the energy of the
cluster and the sum of the energies of the components divided by the number of atoms (kcal/mol).
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In general the binding energies per atom are higher for
the neutral clusters and decrease both in the negatively and
positively charged species as expected. Notable is also the
finding that the binding energies for the minima have only
slightly lower values than those of the corresponding
transition states.
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Trans.2007, 364.

(24) King, R. B.; Heine, T.; Corminboeuf, C.; Schleyer, P. v. R.
J. Am. Chem. Soc.2004, 126, 430.

(25) Chen, Z.; Neukemans, S.; Wang, X.; Janssens, E.; Zhou, Z.;
Silverans, R. E.; King, R. B.; Schleyer, P. v. R.; Lievens, P.
J. Am. Chem. Soc.2006, 128, 12829.

(26) King, R. B.; Silaghi-Dumitrescu, I.; Lupan, A.Chem. Phys.
2006, 327, 344.

(27) Vosko, S. H.; Wilk, L.; Nusair, M.Can. J. Phys. 1980, 58,
1200.

(28) Lee, C.; Yang, W.; Parr, R. G.Phys. ReV. B 1988, 37, 785.

(29) Becke, A. D.J. Chem. Phys.1993, 98, 5648.

(30) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch,
M. J. J. Phys. Chem.1994, 98, 11623.

(31) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G.
E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.;
Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.;
Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.;
Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.;
Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford,
S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.;
Morokuma, K.; Rega, N.; Salvador, P.; Dannenberg, J. J.;
Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman,
J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov,
B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,
M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill,
P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J.
L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople,
J. A. Gaussian 98, ReVision A.11.3; Gaussian, Inc.: Pitts-
burgh, PA, 2002.

(32) Archibong, E. F.; St-Amant, A.J. Chem. Phys.1998, 109,
962.

(33) Xie, Y.; Schaefer, H. F.; King, R. B.J. Am. Chem. Soc.2000,
122, 8746.

(34) Papas, B. N.; Schaefer, H. F.J. Mol. Struct. THEOCHEM
2006, 768, 175.

CT7002226

Wade-Mingos Rules in Bare 10- and 12-Vertex Ge Clusters J. Chem. Theory Comput., Vol. 4, No. 1, 2008215



ERRATUM

Minimalist Explicit Solvation Models for Surface
Loops in Proteins. [J. Chem. Theory Comput. 2008,
4, 1] [J. Chem. Theory Comput. 2,
1135-1151 (2006)]. By Ronald P. White and
Hagai Meirovitch*. Department of Computational Biology,
University of Pittsburgh School of Medicine, 3064
Biomedical Tower 3, Pittsburgh, Pennsylvania 15260

Page 1150. Before the last sentence of the paper (starting
“One such method...”) should appear the following two
sentences that have been omitted by mistake:

The calculation of such extensive variables (e.g.,E, F,
and S) with enough accuracy is possible because of the
relatively small size of the system. For example, the average
energy (over the five trajectories) withNW ) 120 (Rcap )
18 Å) is -1587.4( 0.6, -1505.2( 0.7, -1894.9( 8.3,
and -1727.9( 0.6 kcal/mol for the loop of RNase, ser-
proteinase, and loops 1 and 2 of proteinase, whereRtemp )
15, 13, 13, and 13 Å, respectively.

CT600317D

10.1021/ct600317d
Published on Web 11/18/2006
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